設(shè)x∈[-
π
2
π
2
],令A(yù)=cos(cosx),B=sin(sinx),則A,B的大小關(guān)系為
 
考點(diǎn):三角函數(shù)線
專題:計(jì)算題,三角函數(shù)的求值
分析:在x∈[0,
π
2
],sinx是增函數(shù),cosx是減函數(shù),在 x∈[-
π
2
,0],sinx是增函數(shù),cosx也是增函數(shù).再分類討論,即可得出結(jié)論.
解答: 解:在x∈[0,
π
2
],sinx是增函數(shù),cosx是減函數(shù),在 x∈[-
π
2
,0],sinx是增函數(shù),cosx也是增函數(shù).
x∈[-
π
2
,0],sinx<0,sin(sinx)<0,cos(cosx)>0,∴cos(cosx)>sin(sinx);
cos(cosx)=sin(
π
2
-cosx),x∈[0,
π
2
]時(shí),0<sinx+cosx<
π
2
π
2
π
2
-cosx>sinx>0,∴sinx(
π
2
-cosx)>sin(sinx),
∴總有cos(cosx)>sin(sinx),即A>B.
故答案為:A>B.
點(diǎn)評(píng):本題考查三角函數(shù)值的大小比較,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公司驗(yàn)收一批產(chǎn)品,已知該批產(chǎn)品的包裝規(guī)格為每箱10件.現(xiàn)隨機(jī)抽取一箱進(jìn)行檢驗(yàn),檢驗(yàn)方案如下:從中抽取1件進(jìn)行檢驗(yàn),若是次品,則不再檢驗(yàn)并拒收這批產(chǎn)品;若是正品,則再從該箱中抽取1件進(jìn)行檢驗(yàn),如此繼續(xù),至多進(jìn)行4次檢驗(yàn)(每次檢驗(yàn)過的產(chǎn)品都不放回),若連續(xù)檢驗(yàn)的4件產(chǎn)品都是正品,則接收這批產(chǎn)品.鎖定抽取的這箱產(chǎn)品中有2件是次品.
(Ⅰ)在第一次檢驗(yàn)為正品的條件下,求第二次檢驗(yàn)為正品的概率;
(Ⅱ)求這批產(chǎn)品被拒絕的概率;
(Ⅲ)已知每件產(chǎn)品的檢驗(yàn)費(fèi)用為100元,對(duì)這批產(chǎn)品作檢驗(yàn)所需的費(fèi)用為X(單位:元),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示莖葉圖記錄了甲、乙兩組各三名同學(xué)在期末考試中的數(shù)學(xué)成績.乙組記錄中有一個(gè)數(shù)字模糊,無法確認(rèn),假設(shè)這個(gè)數(shù)字具有隨機(jī)性,并在圖中以a表示.乙組平均成績超過甲組平均成績的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|x2-4x>0},B={x||2x-1>3},則(∁UA)∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[0,4]上任取一實(shí)數(shù)a,使方程x2+2x+a=0有實(shí)根的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=msin(πx+α1)+ncos(πx+α2),其中m、n、α1、α2都是非零實(shí)數(shù),若 f(2001)=1,則f(2005)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-ax2+ax-1,x∈[0,1],若a≥
1
2
,則f(x)的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x=log32,y=log95,z=0.5-0.2,則( 。
A、x<y<z
B、z<x<y
C、z<y<x
D、y<z<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A=﹛x|x-2>0﹜,B=﹛x|x|≤1﹜.則(∁UA)∪B=(  )
A、{x|-1≤x≤1}
B、{x|-1≤x≤1或x>2}
C、{x|-1≤x≤2}
D、{x|x≤2}

查看答案和解析>>

同步練習(xí)冊(cè)答案