求函數(shù)y=sin2(x+)+cos2(x-)-1的最大值.

分析:求三角函數(shù)式的最值,最基本思想是利用正弦、余弦函數(shù)的有界性.注意到函數(shù)式降次后再展開(kāi)合并只剩一個(gè)含變量的正弦,故問(wèn)題可解.

解:因?yàn)閥=)-1

=[cos(2x-)-cos(2x+)]=sin2xsin=sin2x≤,

所以ymax=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A、B、C為銳角三角形的三個(gè)內(nèi)角,
n
=(sinB-sinC+sinA,sinB)
,
m
=(sinB-sinC-sinA,sinC)
,且滿足
m
n

(Ⅰ)求角A的大。
(Ⅱ)求函數(shù)y=sin2(
A+C
2
-
π
3
)+cos2(B-
π
3
)
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0≤x≤
π2
,求函數(shù)y=sin2 x+cos x的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=sin2(2x-)的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省臺(tái)州市三門(mén)縣亭旁中學(xué)高一(下)月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知0≤x≤,求函數(shù)y=sin2 x+cos x的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案