已知0≤x≤
π2
,求函數(shù)y=sin2 x+cos x的最值.
分析:利用同角三角函數(shù)的基本關(guān)系化簡(jiǎn)函數(shù),由x的范圍求出cos x 的范圍,利用二次函數(shù)的性質(zhì)求出函數(shù)y的最值.
解答:解:函數(shù)y=sin2 x+cos x=-cos2x+cos x+1=
5
4
-(cosx-
1
2
)
2

∵0≤x≤
π
2
,∴0≤cos x≤1,∴當(dāng)cos x=
1
2
時(shí),函數(shù)y有最大值為
5
4
,
當(dāng)cos x=0或1時(shí),函數(shù)y有最小值為 1.
點(diǎn)評(píng):本題考查同角三角函數(shù)的基本關(guān)系,二次函數(shù)的性質(zhì),求出cos x 的范圍是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0≤x≤
π2
,求函數(shù)y=cos2x-2acosx的最大值M(a)與最小值m(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0≤x≤
π2
,求函數(shù)f(x)=cos2x+sinx的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2002年高中會(huì)考數(shù)學(xué)必備一本全2002年1月第1版 題型:044

已知0≤x≤2π,求適合下列條件的角x的集合:(1)角x的正弦、余弦函數(shù)都是減函數(shù);(2)角x的正弦函數(shù)是增函數(shù),而余弦函數(shù)是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

已知0x,分別求適合下列各條件的x的集合:

(1);

(2)

查看答案和解析>>

同步練習(xí)冊(cè)答案