10.已知函數(shù)f(x)=Acos(ωx+φ)(x∈R)的圖象的一部分如圖所示,其中A>0,ω>0,|φ|<$\frac{π}{2}$,為了得到函數(shù)f(x)的圖象,只要將函數(shù)g(x)=2cos2$\frac{x}{2}-2{sin^2}\frac{x}{2}$(x∈R)圖象上所有的點(diǎn)( 。
A.向右平移$\frac{π}{6}$個單位長度,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍,縱坐標(biāo)不變
B.向右平移$\frac{π}{6}$個單位長度,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍;縱坐標(biāo)不變
C.向左平移$\frac{π}{3}$個單位長度,再把得所各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍;縱坐標(biāo)不變
D.向左平移$\frac{π}{3}$個單位長度,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變

分析 有最值求得A,由周期求得ω,由特殊點(diǎn)的坐標(biāo)求得φ的值,可得函數(shù)f(x)的解析式.在利用三角恒等變換化簡g(x)的解析式,利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:由題意可得A=2,$\frac{3}{4}$T=$\frac{3}{4}$•$\frac{2π}{ω}$=$\frac{π}{3}$+$\frac{5π}{12}$,求得ω=2.
根據(jù)sin[2×(-$\frac{5π}{12}$)+φ]=0,求得φ-$\frac{5π}{6}$=kπ,k∈Z,.
再根據(jù)|φ|<$\frac{π}{2}$,故φ=-$\frac{π}{6}$,故函數(shù)f(x)=2cos(2x-$\frac{π}{6}$).
將函數(shù)g(x)=2cos2$\frac{x}{2}-2{sin^2}\frac{x}{2}$=cosx+1-2•$\frac{1-cosx}{2}$=2cosx 圖象上所有的點(diǎn)向右平移$\frac{π}{6}$個單位長度,可得y=2cos(x-$\frac{π}{6}$)的圖象;
再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍;縱坐標(biāo)不變,可得函數(shù)f(x)=2cos(2x-$\frac{π}{6}$)的圖象,
故選:B.

點(diǎn)評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,三角恒等變換,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=$\frac{1}{2}$x2-ax+4lnx在($\frac{1}{2}$,+∞)是單調(diào)遞增的,則a的取值范圍是a≤4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an+Sn=An2+Bn+1(A≠0)則$\frac{B-1}{A}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=n2,則sin($\frac{{a}_{8}-12}{2}$π+$\frac{π}{3}$)的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)復(fù)數(shù)z滿足|z|=5,且(3+4i)z是純虛數(shù),求$\overline{z}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)p:函數(shù)f(x)=x2-2ax-1在區(qū)間(-∞,2]上單調(diào)遞減,q:函數(shù)g(x)=lg(x2+ax+4)的定義域是R,如果命題“p或q”為真命題,“p且q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=Asin(ωx+$\frac{π}{4}$)(A>0,ω>0),g(x)=tanx,它們的最小正周期之積為2π2,f(x)的最大值為2g($\frac{17π}{4}$)
(1)求f(x)的單調(diào)遞增區(qū)間
(2)設(shè)h(x)=$\frac{3}{2}$f2(x)+2$\sqrt{3}$cos2x,當(dāng)x∈[a,$\frac{π}{3}$]時,h(x)有最小值為3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知集合A=R,B=R,若f:x→2x-1是從集合A到B的一個映射,則B中的元素3對應(yīng)A中的元素為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$\overrightarrow a=3\overrightarrow{e_1}-2\overrightarrow{e_2},\overrightarrow b=4\overrightarrow{e_1}+\overrightarrow{e_2}$,其中$\overrightarrow{e_1}=({1,0}),\overrightarrow{e_2}=({0,1})$,求:
(1)$\overrightarrow a•\overrightarrow b$;$|{\overrightarrow a+\overrightarrow b}$|;
(2)$\overrightarrow a$與$\overrightarrow b$的夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案