【題目】已知函數(shù).

1)當(dāng)時,求曲線處的切線方程;

2)討論的單調(diào)性;

3)設(shè)、為曲線上的任意兩點(diǎn),并且,若恒成立,證明:.

【答案】1;(2)若 上遞增;若時,單調(diào)遞增;,單調(diào)遞減;(3)證明見解析.

【解析】

1)將代入可得函數(shù)解析式,求得導(dǎo)數(shù)并代入求得切線的斜率.代入函數(shù)可得切點(diǎn)坐標(biāo),由點(diǎn)斜式即可求得切線方程.

2)先求得導(dǎo)函數(shù),對分類討論,根據(jù)導(dǎo)函數(shù)的符號即可判斷單調(diào)性.

3)根據(jù)恒成立及(2)中函數(shù)單調(diào)性的討論,可求得.代入函數(shù)并結(jié)合不等式即可得.利用定義作差,,化簡后即可證明.

1)當(dāng)時,,

對函數(shù)求導(dǎo)得,

,又,

∴曲線處的切線方程為:;

2)求導(dǎo)得,

,,上遞增;

,當(dāng)時,,單調(diào)遞增;

當(dāng)時,,單調(diào)遞減.

3)由(2)知,若,上遞增,

,故不恒成立.

,當(dāng)時,遞減,,不合題意.

,當(dāng)時,遞增,,不合題意.

,上遞增,在上遞減,,合題意.

,且(當(dāng)且僅當(dāng)時取.

設(shè),,

,

因此,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中真命題的序號為(少填或錯填均不得分)______.若一個球的半徑縮小為原來的一半,則其體積縮小為原來的八分之一;②若兩組數(shù)據(jù)的平均值相等,則它們的標(biāo)準(zhǔn)差也相等;③直線與圓相切;④若兩個平面都垂直于同一個平面,則這兩個平面平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)計(jì)一個隨機(jī)試驗(yàn),使一個事件的概率與某個未知數(shù)有關(guān),然后通過重復(fù)試驗(yàn),以頻率估計(jì)概率,即可求得未知數(shù)的近似解,這種隨機(jī)試驗(yàn)在數(shù)學(xué)上稱為隨機(jī)模擬法,也稱為蒙特卡洛法。比如要計(jì)算一個正方形內(nèi)部不規(guī)則圖形的面積,就可以利用撒豆子,計(jì)算出落在不規(guī)則圖形內(nèi)部和正方形內(nèi)部的豆子數(shù)比近似等于不規(guī)則圖形面積與正方形面積比,從而近似求出不規(guī)則圖形的面積.

統(tǒng)計(jì)學(xué)上還有一個非常著名的蒲豐投針實(shí)驗(yàn):平面上間隔的平行線,向平行線間的平面上任意投擲一枚長為的針,通過多次實(shí)驗(yàn)可以近似求出針與任一平行線(以為例)相交(當(dāng)針的中點(diǎn)在平行線外不算相交)的概率.以表示針的中點(diǎn)與最近一條平行線的距離,又以表示所成夾角,如圖甲,易知滿足條件:,

由這兩式可以確定平面上的一個矩形,如圖乙,在圖甲中,當(dāng)滿足___________,之間的關(guān)系)時,針與平行線相交(記為事件).可用從實(shí)驗(yàn)中獲得的頻率去近似,即投針次,其中相交的次數(shù)為,則,歷史上有一個數(shù)學(xué)家親自做了這實(shí)驗(yàn),他投擲的次數(shù)是5000,相交的次數(shù)為2550次,,,依據(jù)這個實(shí)驗(yàn)求圓周率的近似值_________.(精確到3位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列滿足:對一切,有,其中是與無關(guān)的常數(shù),稱數(shù)列上有界(有上界),并稱是它的一個上界,對一切,有,其中是與無關(guān)的常數(shù),稱數(shù)列下有界(有下界),并稱是它的一個下界.一個數(shù)列既有上界又有下界,則稱為有界數(shù)列,常值數(shù)列是一個特殊的有界數(shù)列.設(shè),數(shù)列滿足,.

1)若數(shù)列為常數(shù)列,試求實(shí)數(shù)、滿足的等式關(guān)系,并求出實(shí)數(shù)的取值范圍;

2)下面四個選項(xiàng),對一切實(shí)數(shù),恒正確的是.(寫出所有正確選項(xiàng),不需要證明其正確,但需要簡單說明一下為什么不選余下幾個)

A. 當(dāng)時, B. 當(dāng)時,

C. 當(dāng)時, D. 當(dāng)時,

3)若,且數(shù)列是有界數(shù)列,求的值及的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸正半軸且單位長度相同的極坐標(biāo)系中曲線,為參數(shù)).

(Ⅰ)求曲線上的點(diǎn)到曲線距離的最小值;

(Ⅱ)若把上各點(diǎn)的橫坐標(biāo)都擴(kuò)大原來為原來的2倍,縱坐標(biāo)擴(kuò)大原來的倍,得到曲線,設(shè),曲線交于兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的極值;

(2)設(shè)函數(shù).若存在區(qū)間,使得函數(shù)上的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)雙曲線 的左右焦點(diǎn)分別為,過的直線分別交雙曲線左右兩支于點(diǎn)MN.若以MN為直徑的圓經(jīng)過點(diǎn),則雙曲線的離心率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,,,點(diǎn)EF分別在,,且,.設(shè).

1)當(dāng)時,求異面直線所成角的大。

2)當(dāng)平面平面時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)的導(dǎo)函數(shù)的部分圖象如圖所示,,當(dāng),時,則的最大值為_________.

查看答案和解析>>

同步練習(xí)冊答案