設不等式組
x≤3
y≤4
4x+3y≥12
所表示的平面區(qū)域為D.若圓C落在區(qū)域D中,則圓C的半徑r的最大值為
 
考點:簡單線性規(guī)劃
專題:數(shù)形結(jié)合
分析:畫出平面區(qū)域D,可得到一個直角三角形,要使圓C的半徑r最大,只要圓C和直角三角形相內(nèi)切,由平面幾何知識可求得r的最大值為1.
解答: 解:由約束條件
x≤3
y≤4
4x+3y≥12
作出可行域如圖,

使圓C的半徑r最大,只要圓C和直角三角形相內(nèi)切,
由AB=4,BC=3,可得AC=5,
設內(nèi)切圓半徑為r,則
1
2
×3×4=
1
2
(3+4+5)r
,解得r=1.
故答案為:1.
點評:本題考查線性規(guī)劃和圓的知識,滲透數(shù)形結(jié)合的思想,考查了等積法,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

x
+1)4
x
-1)5的展開式中,x3的系數(shù)為:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}的公比q≠1,則下面說法中不正確的是(  )
A、{an+2+an}是等比數(shù)列
B、對于k∈N*,k>1,ak-1+ak+1≠2ak
C、對于n∈N*,都有anan+2>0
D、若a2>a1,則對于任意n∈N*,都有an+1>an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在黃岡市青年歌手大賽中,七位評委為某選手打出的分數(shù)如下:91,89,91,96,94,95,94,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均值和方差分別為( 。
A、93,2.8
B、93,2
C、94,2.8
D、94,2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinωxsin(
π
2
+ωx)-cos2ωx-
1
2
(ω>0),其圖象兩相鄰對稱軸間的距離為
π
2

(Ⅰ)求ω的值;
(Ⅱ)設△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且c=
7
,f(C)=0,若向量
m
=(1,sinA)與向量
n
=(3,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

e,π分別是自然對數(shù)的底數(shù)和圓周率,則下列不等式中不成立的是(  )
A、logπe+(lnπ)2>2
B、logπe+ln
π
>1
C、π-e>eπ-ee
D、
2
1
e
+
1
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2+bx+c的圖象交x軸于點A(x0,0)和點B(2,0),與y軸的正半軸交于點C,其對稱軸是直線x=-1,tan∠BAC=2,點A關(guān)于y軸的對稱點為點D.
(1)確定A、C、D三點的坐標;
(2)求過B、C、D三點的二次函數(shù)的解析式;
(3)若過點(0,3)且平行于x軸的直線與(2)小題中所求拋物線交于M、N兩點,以MN為一邊,二次函數(shù)圖象上任意一點P(x,y)為頂點作平行四邊形,若平行四邊形的面積為S,寫出S關(guān)于P點縱坐標y的函數(shù)解析式.
(4)當
1
2
<x<4
時,(3)小題中平行四邊形的面積是否有最大值?若有,請求出;若無,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)2+i與復數(shù)
1
3+i
在復平面上的對應點分別是A、B,則∠AOB等于( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖正方形ABCD的邊長為2
2
,四邊形BDEF是平行四邊形,BD與AC交于點G,O為GC的中點,F(xiàn)O=
3
,且FO⊥平面ABCD.
(Ⅰ)求證:AE∥平面BCF;
(Ⅱ)求證:CF⊥平面AEF;
(Ⅲ)求二面角A-CF-B余弦值的大小.

查看答案和解析>>

同步練習冊答案