【題目】如圖,在四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形, , 在上,且∥面BDM.
(1)求直線PC與平面BDM所成角的正弦值;
(2)求平面BDM與平面PAD所成銳二面角的大小.
【答案】(1);(2).
【解析】試題分析:
利用題意建立空間直角坐標系,據(jù)此可得:
(1) 直線PC與平面BDM所成角的正弦值為
(2) 平面BDM與平面PAD所成銳二面角的大小為.
試題解析:
解:因為, 作AD邊上的高PO,
則由,由面面垂直的性質(zhì)定理,得,
又是矩形,同理,知, ,故.
以AD中點O為坐標原點,OA所在直線為x軸,OP所在直線為z軸,AD的垂直平分線y軸,建立如圖所示的坐標系,則,
連結(jié)AC交BD于點N,由,
所以,又N是AC的中點,
所以M是PC的中點,則,設面BDM的法向量為,
,
,得,
令,解得,所以取.
(1)設PC與面BDM所成的角為,則,
所以直線PC與平面BDM所成角的正弦值為 .
(2)面PAD的法向量為向量,設面BDM與面PAD所成的銳二面角為,
則,故平面BDM與平面PAD所成銳二面角的大小為.
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線上的點到點的距離比它到直線的距離小2.
(1)求曲線的方程;
(2)過點且斜率為的直線交曲線于, 兩點,若,當時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在區(qū)間[﹣ ,π]上的函數(shù)y=f(x)的圖象關(guān)于直線x= 對稱,當x≥ 時,函數(shù)y=sinx.
(1)求f(﹣ ),f(﹣ )的值;
(2)求y=f(x)的表達式
(3)若關(guān)于x的方程f(x)=a有解,那么將方程在a取某一確定值時所求得的所有解的和記為Ma , 求Ma的所有可能取值及相應a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F分別為棱AB、AD的中點.
(1)求證:EF平行平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1
(3)求直線A1C與平面ABCD所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正四棱錐P﹣ABCD中,側(cè)棱PA與底面ABCD所成的角的正切值為 .
(1)求側(cè)面PAD與底面ABCD所成的二面角的大。
(2)若E是PB的中點,求異面直線PD與AE所成角的正切值;
(3)問在棱AD上是否存在一點F,使EF⊥側(cè)面PBC,若存在,試確定點F的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓: 過圓上任意一點向軸引垂線垂足為(點、可重合),點為的中點.
(1)求的軌跡方程;
(2)若點的軌跡方程為曲線,不過原點的直線與曲線交于、兩點,滿足直線, , 的斜率依次成等比數(shù)列,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐,側(cè)面是邊長為2的正三角形,且與底面垂直,底面是的菱形, 為棱上的動點,且.
(I)求證: 為直角三角形;
(II)試確定的值,使得二面角的平面角余弦值為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若如圖為某直三棱柱(側(cè)棱與底面垂直)被削去一部分后的直觀圖與三視圖中的側(cè)視圖、俯視圖,則其正視圖的面積為 ,三棱錐D﹣BCE的體積為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 (本小題滿分12分)
如圖, 在四面體ABOC中, , 且.
(Ⅰ)設為為的中點, 證明: 在上存在一點,使,并計算;
(Ⅱ)求二面角的平面角的余弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com