【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F分別為棱AB、AD的中點(diǎn).
(1)求證:EF平行平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1
(3)求直線A1C與平面ABCD所成角的正切值.

【答案】證明:(1)在正方體ABCD﹣A1B1C1D1中,
∵E、F分別為棱AB、AD的中點(diǎn),∴EF∥BD,
∵BD∥B1D1 , ∴EF∥B1D1 ,
∵EF平面CB1D1 , B1D1平面CB1D1 ,
∴EF∥平面CB1D1
(2)∵正方體ABCD﹣A1B1C1D1中,四邊形A1B1C1D1是正方形,
∴B1D1⊥A1C1 , AA1⊥B1D1 ,
∵AA1∩A1C1=A1 , B1D1⊥平面CAA1C1 ,
∴B1D1平面A1B1C1D1 ,
∴平面CAA1C1⊥平面CB1D1
解:(3)∵AA1⊥底面ABCD,
∴∠A1CA是直線A1C與平面ABCD所成角,
設(shè)正方體ABCD﹣A1B1C1D1中棱長(zhǎng)為a,
則AA1=a,AC==a,
tan∠A1CA===
∴直線A1C與平面ABCD所成角的正切值為
【解析】(1)推導(dǎo)出EF∥BD,BD∥B1D1 , 從而EF∥B1D1 , 由此能證明EF∥平面CB1D1
(2)推導(dǎo)出B1D1⊥A1C1 , AA1⊥B1D1 , 由此能證明平面CAA1C1⊥平面CB1D1
(3)由AA1⊥底面ABCD,得∠A1CA是直線A1C與平面ABCD所成角,由此能求出直線A1C與平面ABCD所成角的正切值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平面與平面垂直的判定的相關(guān)知識(shí),掌握一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直,以及對(duì)空間角的異面直線所成的角的理解,了解已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在矩形中, 的中點(diǎn),將三角形沿翻折到圖②的位置,使得平面平面.

(Ⅰ)在線段上確定點(diǎn),使得平面,并證明;

(Ⅱ)求所在平面構(gòu)成的銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,點(diǎn)為橢圓上一點(diǎn). 的重心為,內(nèi)心為,且,則該橢圓的離心率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)將100名高二文科生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班進(jìn)行教改實(shí)驗(yàn).為了了解教學(xué)效果,期末考試后,陳老師對(duì)甲、乙兩個(gè)班級(jí)的學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì)分析,畫(huà)出頻率分布直方圖(如下圖).記成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.

(Ⅰ)根據(jù)頻率分布直方圖填寫(xiě)下面2×2列聯(lián)表;

甲班(A方式)

乙班(B方式)

總計(jì)

成績(jī)優(yōu)秀

成績(jī)不優(yōu)秀

總計(jì)

(Ⅱ)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為:“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān)?

附:.

P(K2k)

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是矩形, 平面 , , , 分別是, 的中點(diǎn).

(Ⅰ)求證: ∥平面

(Ⅱ)求證: 平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

,求函數(shù)的極值;

設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;

若在區(qū)間不存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,面底面,且是邊長(zhǎng)為的等邊三角形, , 上,且∥面BDM.

(1)求直線PC與平面BDM所成角的正弦值;

(2)求平面BDM與平面PAD所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), ),曲線處的切線方程為.

(Ⅰ)求 的值;

(Ⅱ)證明: ;

(Ⅲ)已知滿足的常數(shù)為.令函數(shù)(其中是自然對(duì)數(shù)的底數(shù), ),若的極值點(diǎn),且恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,試討論函數(shù)的單調(diào)性;

(Ⅱ)設(shè),當(dāng)對(duì)任意的恒成立時(shí),求函數(shù)的最大值的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案