【題目】如圖,四棱錐,側面是邊長為2的正三角形,且與底面垂直,底面是的菱形, 為棱上的動點,且.
(I)求證: 為直角三角形;
(II)試確定的值,使得二面角的平面角余弦值為.
【答案】(1)見解析;(II) .
【解析】試題分析:(1)取中點,連結,以為原點, 為軸, 為軸, 為軸,建立空間直角坐標系,利用向量法能證明為直角三角形;(2)設,由,得,求出平面的法向量和平面的法向量,,根據空間向量夾角余弦公式能求出結果.
試題解析:(I)取中點,連結,依題意可知均為正三角形,所以,
又平面平面,
所以平面,
又平面,所以,
因為,所以,即,
從而為直角三角形.
說明:利用 平面證明正確,同樣滿分!
(II)[向量法]由(I)可知,又平面平面,平面平面,
平面,所以平面.
以為原點,建立空間直角坐標系如圖所示,則
,
由可得點的坐標
所以,
設平面的法向量為,則,
即解得,
令,得,
顯然平面的一個法向量為,
依題意,
解得或(舍去),
所以,當時,二面角的余弦值為.
[傳統(tǒng)法]由(I)可知平面,所以,
所以為二面角的平面角,
即,
在中, ,
所以
,
由正弦定理可得,即
解得,
又,所以,
所以,當時,二面角的余弦值為.
科目:高中數學 來源: 題型:
【題目】對某校高一年級學生參加社區(qū)服務次數進行統(tǒng)計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務的次數.根據此數據作出了頻數與頻率的統(tǒng)計表和頻率分布直方圖如下:
分組 | 頻數 | 頻率 |
10 | 0.25 | |
25 | ||
2 | 0.05 | |
合計 | 1 |
(1)求出表中及圖中的值;
(2)試估計他們參加社區(qū)服務的平均次數;
(3)在所取樣本中,從參加社區(qū)服務的次數不少于20次的學生中任選2人,求至少1人參加社區(qū)服務次數在區(qū)間內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形, , 在上,且∥面BDM.
(1)求直線PC與平面BDM所成角的正弦值;
(2)求平面BDM與平面PAD所成銳二面角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓: (),設為圓與軸負半軸的交點,過點作圓的弦,并使弦的中點恰好落在軸上.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)延長交曲線于點,曲線在點處的切線與直線交于點,試判斷以點為圓心,線段長為半徑的圓與直線的位置關系,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(, ),曲線在處的切線方程為.
(Ⅰ)求, 的值;
(Ⅱ)證明: ;
(Ⅲ)已知滿足的常數為.令函數(其中是自然對數的底數, ),若是的極值點,且恒成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高三年級一次數學考試后,為了解學生的數學學習情況,隨機抽取名學生的數學成績,制成表所示的頻率分布表.
組號 | 分組 | 頻數 | 頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 | |||
合計 |
(1)求、、的值;
(2)若從第三、四、五組中用分層抽樣方法抽取名學生,并在這名學生中隨機抽取名學生與張老師面談,求第三組中至少有名學生與張老師面談的概率
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在研究塞卡病毒(Zika virus)某種疫苗的過程中,為了研究小白鼠連續(xù)接種該種疫苗后出現癥狀的情況,做接種試驗,試驗設計每天接種一次,連續(xù)接種3天為一個接種周期.已知小白鼠接種后當天出現癥狀的概率為,假設每次接種后當天是否出現癥狀與上次接種無關.
(1)若出現癥狀即停止試驗,求試驗至多持續(xù)一個接種周期的概率;
(2)若在一個接種周期內出現3次 癥狀,則這個接種周期結束后終止試驗,試驗至多持續(xù)3個周期,設接種試驗持續(xù)的接種周期數為 ,求 的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com