【題目】已知函數(shù)的導(dǎo)函數(shù)為,且,其中為自然對數(shù)的底數(shù).
(1)求函數(shù)的最大值;
(2)證明 :.
【答案】(1)0(2)見解析
【解析】分析:(1)由題意可得,明確函數(shù)的單調(diào)性,從而得到函數(shù)的最大值;
(2)由(1)得,即,要證,
即,故只需證,故只需證,
即證成立.
詳解:(1)因為,所以 ,
,
解得則,
所以,
令,得,令得,
所以當(dāng)時,.
(2)由(1)得的最大值為0,
所以,即,
從而,
要證,
即,
故只需證,
即證成立;
令
則,
令,則,
令,得,
因為單調(diào)遞增,所以當(dāng)時,,單調(diào)遞減,即單調(diào)遞減.
當(dāng)時,,單調(diào)遞增, 即單調(diào)遞增,
因為,,
由零點存在定理可知,,使得,
故當(dāng)或時,單調(diào)遞增;
當(dāng)時,單調(diào)遞減,
所以的最小值是或.
由,得,
,
因為,所以,
故當(dāng)時,,所以原不等式成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的通項公式為,數(shù)列的通項公式為,設(shè),若在數(shù)列中,對任意恒成立,則實數(shù)的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱臺中,和均為等邊三角形,四邊形為直角梯形,平面,,分別為的中點.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),定義函數(shù),給出下列命題:
①;
②函數(shù)是偶函數(shù);
③當(dāng)a<0時,若0<m<n<1,則有F(m)﹣F(n)<0成立;
④當(dāng)a>0時,函數(shù)有4個零點.
其中正確命題的序號為________________________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年央視大型文化節(jié)目《經(jīng)典詠流傳》的熱播,在全民中掀起了誦讀詩詞的熱潮,節(jié)目組為熱心觀眾給以獎勵,要從名觀眾中抽取名幸運觀眾.先用簡單隨機(jī)抽樣從人中剔除人,剩下的人再按系統(tǒng)抽樣方法抽取人,則在人中,每個人被抽取的可能性( )
A. 均不相等B. 都相等,且為
C. 不全相等D. 都相等,且為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若,當(dāng)時,求的單調(diào)區(qū)間;
(2)若函數(shù)有唯一的零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,
(1)求證:cos2+cos2=1;
(2)若cos(+A)sin(π+B)tan(C﹣π)<0,求證:△ABC為鈍角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某職稱晉級評定機(jī)構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進(jìn)行了統(tǒng)計,繪制了頻率分布直方圖如圖所示,規(guī)定80分及以上者晉級成功,否則晉級失。
(I) 求圖中a的值;
(II) 根據(jù)已知條件完成下面22列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級成功”與性別有關(guān)?
(III) 將頻率視為概率,從本次考試的所有人員中,隨機(jī)抽取3人進(jìn)行約談,記這3人中晉級失敗的人數(shù)為X,求X的分布列與數(shù)學(xué)期望E(X).
晉級成功 | 晉級失敗 | 合計 | |
男 | 16 | ||
女 | 50 | ||
合計 |
參考公式:,其中
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com