(本小題滿分12分)
在四棱柱中,底面是直角梯形,AB∥CD,∠ABC=,AB=PB=PC=BC=2CD=2,平面PBC⊥平面ABCD

(1)求證:AB⊥平面PBC
(2)求三棱錐C-ADP的體積
(3)在棱PB上是否存在點M使CM∥平面PAD?
若存在,求的值。若不存在,請說明理由。

(1)證明:因為∠ABC=,所以AB⊥BC。因為平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,AB平面ABCD,所以AB⊥平面PBC ;(2) ;(3)在棱PB上存在點M使得CM∥平面PAD,此時

解析試題分析:(1)證明:因為∠ABC=,所以AB⊥BC。    (1分)
因為平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC
AB平面ABCD,所以AB⊥平面PBC                  (4分)
(2)取BC的中點O,連接PO
因為PB=PC,所以PO⊥BC
因為平面PBC⊥平面ABCD
平面PBC∩平面ABCD=BC,PO平面PBC
所以PO⊥平面ABCD                               (5分)
在等邊△PBC中PO=

           (8分)
(3)在棱PB上存在點M使得CM∥平面PAD,此時
證明:取AB的中點N,連接CM,CN,MN
則MN∥PA,AN=
因為AB ="2CD" 所以AN=CD
因為AB ∥CD所以四邊形ANCD是平行四邊形。
所以CN∥AD
因為MN∩CN=N,PA∩AD=A
所以平面MNC∥平面PAD                                 (10分)
因為平面MNC
所以CM∥平面PAD                                      ( 12分)
考點:本題考查了空間中的線面關系
點評:以棱錐柱為載體考查立體幾何中的線面、面面、點面位置關系或距離是高考的亮點,掌握其判定性質(zhì)及定理,是解決此類問題的關鍵

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知ABCD是矩形,AD=2AB,E,F(xiàn)分別是線段AB,BC的中點,PA⊥平面ABCD.
(Ⅰ)求證:DF⊥平面PAF;
(Ⅱ)在棱PA上找一點G,使EG∥平面PFD,當PA=AB=4時,求四面體E-GFD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知四棱錐平面,
,底面為直角梯形,
分別是的中點.

(1)求證:// 平面;
(2)求截面與底面所成二面角的大;
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知兩個正四棱錐P-ABCD與Q-ABCD的高分別為1和2,AB=4.

(Ⅰ)證明PQ⊥平面ABCD;
(Ⅱ)求異面直線AQ與PB所成的角;
(Ⅲ)求點P到平面QAD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)如圖所示,四棱錐中,底面是邊長為2的菱形,是棱上的動點.

(Ⅰ)若的中點,求證://平面;
(Ⅱ)若,求證:;
(III)在(Ⅱ)的條件下,若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分)
如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長AB=2,側(cè)棱BB1的長為4,過點B作B1C的垂線交側(cè)棱CC1于點E,交B1C于點F,

⑴求證:A1C⊥平面BDE;
⑵求A1B與平面BDE所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面ABCD是一直角梯形,,,,且PA=AD=DC=AB=1.

(1)證明:平面平面
(2)設AB,PA,BC的中點依次為M、N、T,求證:PB∥平面MNT
(3)求異面直線所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題13分)
如圖,在四棱錐中,平面,底面是菱形,.分別是的中點.

(1) 求證:
(2) 求證:.

查看答案和解析>>

同步練習冊答案