【題目】已知某產(chǎn)品出廠前需要依次通過三道嚴(yán)格的審核程序,三道審核程序通過的概率依次為 , , ,每道程序是相互獨(dú)立的,且一旦審核不通過就停止審核,該產(chǎn)品只有三道程序都通過才能出廠銷售 (Ⅰ)求審核過程中只通過兩道程序的概率;
(Ⅱ)現(xiàn)有3件該產(chǎn)品進(jìn)入審核,記這3件產(chǎn)品可以出廠銷售的件數(shù)為X,求X的分布列及數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一邊長(zhǎng)為6的正方形鐵片,在鐵片的四角各截去一個(gè)邊長(zhǎng)為x的小正方形后,沿圖中虛線部分折起,做成一個(gè)無蓋方盒.
(1)試用x表示方盒的容積V(x),并寫出x的范圍;
(2)求方盒容積V(x)的最大值及相應(yīng)x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱ABC-A′B′C′,底面是邊長(zhǎng)為1的正三角形,側(cè)面為全等的矩形且高為8,求一點(diǎn)自A點(diǎn)出發(fā)沿著三棱柱的側(cè)面繞行一周后到達(dá)A′點(diǎn)的最短路線長(zhǎng).
本題條件不變,求一點(diǎn)自A點(diǎn)出發(fā)沿著三棱柱的側(cè)面繞行兩周后到達(dá)A′點(diǎn)的最短路線長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=2,D1D=3,點(diǎn)M是B1C1的中點(diǎn),點(diǎn)N是AB的中點(diǎn).建立如圖所示的空間直角坐標(biāo)系.
(1)寫出點(diǎn)D、N、M的坐標(biāo);
(2)求線段MD、MN的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論錯(cuò)誤的是 ( )
A. BD∥平面CB1D1 B. AC1⊥BD
C. AC1⊥平面CB1D1 D. 異面直線AD與CB1所成的角為60°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.x,y∈R,若x+y≠0,則x≠1且y≠﹣1
B.a∈R,“ <1“是“a>1“的必要不充分條件
C.命題“x∈R,使得x2+2x+3<0”的否定是“x∈R,都有x2+2x+3>0”
D.“若am2<bm2 , 則a<b”的逆命題為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=
∠ACD=90°,∠EAC=60°,AB=AC=AE.
(1)在直線BC上是否存在一點(diǎn)P,使得DP∥平面EAB?請(qǐng)證明你的結(jié)論.
(2)求平面EBD與平面ABC所成的銳二面角θ的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P-ABCD的底面ABCD是正方形,E,F分別為AC和PB上的點(diǎn),它的直觀圖,正視圖,側(cè)視圖如圖所示.
(1)求EF與平面ABCD所成角的大。
(2)求二面角B-PA-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,A(0,1),AB邊上的高CD所在直線的方程為x+2y-4=0,AC邊上的中線BE所在直線的方程為2x+y-3=0.
(1)求直線AB的方程;
(2)求直線BC的方程;
(3)求△BDE的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com