精英家教網 > 高中數學 > 題目詳情

【題目】已知函數,

(1)設 ,是偶函數,求實數的值;

(2),求函數在區(qū)間上的值域;

(3)若不等式恒成立,求實數的取值范圍.

【答案】(1) (2) (3)

【解析】試題分析:(1)根據偶函數定義得,再根據對數運算性質解得實數的值;(2)根據對數運算法則得再求分式函數值域,即得在區(qū)間上的值域(3)設,將不等式化為,再分離變量得,最后根據基本不等式可得最值,即得實數的取值范圍.

試題解析:(1)因為是偶函數,

所以,

恒成立, 所以.

(2)

,

因為所以,所以,

,則

所以,即函數的值域為.

(3)由,

,則,設

,由不等式恒成立,

,即時,此時恒成立;

,即時,由解得;

所以

,則由不等式恒成立,

因為,所以 ,只需解得;

故實數的取值范圍是.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知極坐標系的極點與直角坐標系的原點重合,極軸與x軸的非負半軸重合.曲線 (t為參數),曲線C2的極坐標方程為ρ=ρcos2θ+8cosθ. (Ⅰ)將曲線C1 , C2分別化為普通方程、直角坐標方程,并說明表示什么曲線;
(Ⅱ)設F(1,0),曲線C1與曲線C2相交于不同的兩點A,B,求|AF|+|BF|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:經過定點P0(x0 , y0)的直線都可以用方程y﹣y0=k(x﹣x0)表示,命題q:直線xtan +y﹣7=0的傾斜角是 ,則下列命題是真命題的為( )
A.(p)∧q
B.p∧q
C.p∨(q)
D.(P)∧(q)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖, 是平面四邊形的對角線, , ,且.現在沿所在的直線把折起來,使平面平面,如圖.

(1)求證: 平面

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為迎接2017年“雙11”,“雙12”購物狂歡節(jié)的來臨,某青花瓷生產廠家計劃每天生產湯碗、花瓶、茶杯這三種瓷器共100個,生產一個湯碗需5分鐘,生產一個花瓶需7分鐘,生產一個茶杯需4分鐘,已知總生產時間不超過10小時.若生產一個湯碗可獲利潤5元,生產一個花瓶可獲利潤6元,生產一個茶杯可獲利潤3元.
(1)使用每天生產的湯碗個數x與花瓶個數y表示每天的利潤ω(元);
(2)怎樣分配生產任務才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線 ,圓

(1)求證:直線與圓總相交;

(2)求出相交的弦長的最小值及相應的值;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x3+ax2+bx+a2(a、b∈R)
(1)若函數f(x)在x=1處有極值為10,求b的值;
(2)若a=﹣4,f(x)在x∈[0,2]上單調遞增,求b的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知過點A(﹣4,0)的動直線l與拋物線C:x2=2py(p>0)相交于B、C兩點.
(1)當l的斜率是時, ,求拋物線C的方程;
(2)設BC的中垂線在y軸上的截距為b,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn , a1=1,an≠0,anan+1=4Sn﹣1.
(Ⅰ)求{an}的通項公式;
(Ⅱ)證明: + +…+ <2.

查看答案和解析>>

同步練習冊答案