【題目】已知數(shù)列{an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,滿足b1=1,.
①求數(shù)列{bn}的通項(xiàng)公式bn;
②若存在p,q,k∈N*,p<q<k,使得ambq,amanbp,anbk成等差數(shù)列,求m+n的最小值.
【答案】(1) an.(2) ①bn=2n﹣1;②7
【解析】
(1)根據(jù)前n項(xiàng)和與通項(xiàng)的關(guān)系,即可求出通項(xiàng)公式;
(2)①將代入遞推公式中,用裂項(xiàng)相消求出,再由前n項(xiàng)和求出通項(xiàng);
②由等差數(shù)列的中項(xiàng)性質(zhì),求出的不等量關(guān)系,結(jié)合基本不等式,即可得到最小值.
(1)∵數(shù)列{an}的前n項(xiàng)和.
∴當(dāng)n=1時(shí),a1=S1,
當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1,
當(dāng)時(shí),a1,滿足上式,
∴an.
(2)①∵
=()+()+()+…+()
1.
∴1,
∴Tn+1=2n+1﹣1,Tn=2n﹣1,
把上面兩式相減得,bn+1=2n,
∴時(shí),,
當(dāng)時(shí),滿足上式,
②由ambq,amanbp,anbk成等差數(shù)列,
有2amanbp=ambq+anbk,
即2,
由于p<q<k,且為正整數(shù),所以q﹣p≥1,k﹣p≥2,
所以mn=m+n≥2m+4n,
可得 mn≥2m+4n,1,
的最小值為12,
此時(shí)或或,
的最小值為12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性并指出相應(yīng)單調(diào)區(qū)間;
(2)若,設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,且恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知服從正態(tài)分布的隨機(jī)變量在區(qū)間,,內(nèi)取值的概率分別為0.6826,0.9544,0.9974.若某種袋裝大米的質(zhì)量(單位:)服從正態(tài)分布,任意選一袋這種大米,質(zhì)量在的概率為_.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某儀器經(jīng)過檢驗(yàn)合格才能出廠,初檢合格率為:若初檢不合格,則需要進(jìn)行調(diào)試,經(jīng)調(diào)試后再次對(duì)其進(jìn)行檢驗(yàn);若仍不合格,作為廢品處理,再檢合格率為.每臺(tái)儀器各項(xiàng)費(fèi)用如表:
項(xiàng)目 | 生產(chǎn)成本 | 檢驗(yàn)費(fèi)/次 | 調(diào)試費(fèi) | 出廠價(jià) |
金額(元) | 1000 | 100 | 200 | 3000 |
(Ⅰ)求每臺(tái)儀器能出廠的概率;
(Ⅱ)求生產(chǎn)一臺(tái)儀器所獲得的利潤為1600元的概率(注:利潤出廠價(jià)生產(chǎn)成本檢驗(yàn)費(fèi)調(diào)試費(fèi));
(Ⅲ)假設(shè)每臺(tái)儀器是否合格相互獨(dú)立,記為生產(chǎn)兩臺(tái)儀器所獲得的利潤,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個(gè)命題:
(1)命題,使得,則,都有;
(2)已知函數(shù)f(x)=|log2x|,若a≠b,且f(a)=f(b),則ab=1;
(3)若平面α內(nèi)存在不共線的三點(diǎn)到平面β的距離相等,則平面α平行于平面β;
(4)已知定義在上的函數(shù) 滿足條件 ,且函數(shù) 為奇函數(shù),則函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱.
其中真命題的序號(hào)為______________.(寫出所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)為橢圓上任意一點(diǎn),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,有,且的最大值.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是關(guān)于軸的對(duì)稱點(diǎn),設(shè)點(diǎn),連接與橢圓相交于點(diǎn),問直線與軸是否交于一定點(diǎn).如果是,求出該定點(diǎn)坐標(biāo);如果不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,平面,為邊上一點(diǎn),,.
(1)證明:平面平面.
(2)若,試問:是否與平面平行?若平行,求三棱錐的體積;若不平行,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com