精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓C a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.

(1)求C的方程;

(2)設直線l不經過P2點且與C相交于AB兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.

【答案】(1).(2)見解析。

【解析】試題分析:(1)根據 兩點關于y軸對稱,由橢圓的對稱性可知C經過, 兩點.另外由知,C不經過點P1,所以點P2C上.因此在橢圓上,代入其標準方程,即可求出C的方程;(2)先設直線P2A與直線P2B的斜率分別為k1,k2,再設直線l的方程,當lx軸垂直時,通過計算,不滿足題意,再設l ),將代入,寫出判別式,利用根與系數的關系表示出x1+x2x1x2,進而表示出,根據列出等式表示出的關系,從而判斷出直線恒過定點.

試題解析:(1)由于, 兩點關于y軸對稱,故由題設知C經過, 兩點.

又由知,C不經過點P1,所以點P2C上.

因此,解得.

C的方程為.

(2)設直線P2A與直線P2B的斜率分別為k1k2,

如果lx軸垂直,設lx=t,由題設知,且,可得A,B的坐標分別為(t, ),(t, ).

,得,不符合題設.

從而可設l ).將代入

由題設可知.

Ax1,y1),Bx2,y2),則x1+x2=x1x2=.

.

由題設,故.

.

解得.

當且僅當時, ,欲使l ,即,

所以l過定點(2,

點睛:橢圓的對稱性是橢圓的一個重要性質,判斷點是否在橢圓上,可以通過這一方法進行判斷;證明直線過定點的關鍵是設出直線方程,通過一定關系轉化,找出兩個參數之間的關系式,從而可以判斷過定點情況.另外,在設直線方程之前,若題設中未告知,則一定要討論直線斜率不存在和存在兩種情況,其通法是聯立方程,求判別式,利用根與系數的關系,再根據題設關系進行化簡.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C所對應的邊分別為a,b,c,且(2a﹣c)cosB=bcosC. (Ⅰ)求角B的大;
(Ⅱ)若a=2,c=3,求sinC的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)求函數fx)的單調遞增區(qū)間;

2)將函數fx)的圖象向右平移個單位,再將所得圖象的橫坐標縮短到原來的一半,縱坐標不變,得到新的函數ygx),當時,求gx)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD=2,動點P在以點C為圓心且與BD相切的圓上.若= + ,則+的最大值為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校為了了解高中生的藝術素養(yǎng),從學校隨機選取男,女同學各50人進行研究,對這100名學生在音樂、美術、戲劇、舞蹈等多個藝術項目進行多方位的素質測評,并把調查結果轉化為個人的素養(yǎng)指標,制成下圖,其中“*”表示男同學,“+”表示女同學.

,則認定該同學為“初級水平”,若,則認定該同學為“中級水平”,若,則認定該同學為“高級水平”;若,則認定該同學為“具備一定藝術發(fā)展?jié)撡|”,否則為“不具備明顯藝術發(fā)展?jié)撡|”.

(I)從50名女同學的中隨機選出一名,求該同學為“初級水平”的概率;

(Ⅱ)從男同學所有“不具備明顯藝術發(fā)展?jié)撡|的中級或高級水平”中任選2名,求選出的2名均為“高級水平”的概率;

(Ⅲ)試比較這100名同學中,男、女生指標的方差的大。ㄖ恍鑼懗鼋Y論).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其圖象向右平移 個單位后得到的函數為奇函數,則函數y=f(x)的圖象(
A.關于點( ,0)對稱
B.關于直線x= 對稱
C.關于點( ,0)對稱
D.關于直線x= 對稱

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】商丘市大型購物中心——萬達廣場將于201876日全面開業(yè),目前正處于試營業(yè)階段,某按摩椅經銷商為調查顧客體驗按摩椅的時間,隨機調查了50名顧客,體驗時間(單位:分鐘)落在各個小組的頻數分布如下表:

體驗

時間

頻數

(1)求這名顧客體驗時間的樣本平均數,中位數,眾數

(2)已知體驗時間為的顧客中有2名男性,體驗時間為的顧客中有3名男性,為進一步了解顧客對按摩椅的評價,現隨機從體驗時間為的顧客中各抽一人進行采訪,求恰抽到一名男性的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校高三年級有學生500人,其中男生300人,女生200人,為了研究學生的數學成績是否與性別有關,現采用分層抽樣的方法,從中抽取了100名學生,先統(tǒng)計了他們期中考試的數學分數,然后按性別分為男、女兩組,再將兩組學生的分數分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)從樣本中分數小于110分的學生中隨機抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分數不小于130分的學生為“數學尖子生”,請你根據已知條件完成2×2列聯表,并判斷是否有90%的把握認為“數學尖子生與性別有關”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

附:K2=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD交點,,

(I)證明:平面平面

(II)若, 三棱錐的體積為,求該三棱錐的側面積.

查看答案和解析>>

同步練習冊答案