【題目】已知等比數(shù)列{an}的公比為q,記bn=am(n﹣1)+1+am(n﹣1)+2+…+am(n﹣1)+m , cn=am(n﹣1)+1am(n﹣1)+2…am(n﹣1)+m , (m,n∈N*),則以下結(jié)論一定正確的是( )
A.數(shù)列{bn}為等差數(shù)列,公差為qm
B.數(shù)列{bn}為等比數(shù)列,公比為q2m
C.數(shù)列{cn}為等比數(shù)列,公比為
D.數(shù)列{cn}為等比數(shù)列,公比為
【答案】C
【解析】解:① ,當(dāng)q=1時(shí),bn=mam(n﹣1) , bn+1=mam(n﹣1)+m=mam(n﹣1)=bn , 此時(shí)是常數(shù)列,選項(xiàng)A不正確,選項(xiàng)B正確;
當(dāng)q≠1時(shí), , ,此時(shí) ,選項(xiàng)B不正確,
又bn+1﹣bn= ,不是常數(shù),故選項(xiàng)A不正確,
②∵等比數(shù)列{an}的公比為q,∴ ,
∴ = ,
∴ = = ,故C正確D不正確.
綜上可知:只有C正確.
故選C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等差關(guān)系的確定和等比關(guān)系的確定的相關(guān)知識(shí)可以得到問題的答案,需要掌握如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),即-=d ,(n≥2,n∈N)那么這個(gè)數(shù)列就叫做等差數(shù)列;等比數(shù)列可以通過定義法、中項(xiàng)法、通項(xiàng)公式法、前n項(xiàng)和法進(jìn)行判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的序號(hào)是__________.
①用刻畫回歸效果,當(dāng) 越大時(shí),模型的擬合效果越差;反之,則越好;
②可導(dǎo)函數(shù)在處取極值,則;
③歸納推理是由特殊到一般的推理,而演繹推理是由一般到特殊的推理;
④綜合法證明數(shù)學(xué)問題是“由因?qū)Ч保治龇ㄗC明數(shù)學(xué)問題是“執(zhí)果索因”。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定區(qū)域D: .令點(diǎn)集T={(x0 , y0)∈D|x0 , y0∈Z,(x0 , y0)是z=x+y在D上取得最大值或最小值的點(diǎn)},則T中的點(diǎn)共確定條不同的直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電影院共有個(gè)座位.某天,這家電影院上、下午各演一場(chǎng)電影.看電影的是甲、乙、丙三所中學(xué)的學(xué)生,三所學(xué)校的觀影人數(shù)分別是985人, 1010人,2019人(同一所學(xué)校的學(xué)生有的看上午場(chǎng),也有的看下午場(chǎng),但每人只能看一-場(chǎng)).已知無(wú)論如何排座位,這天觀影時(shí)總存在這樣的一個(gè)座位,上、 下午在這個(gè)座位上坐的是同一所學(xué)校的學(xué)生,那么的可能取值有( )
A. 12個(gè) B. 11個(gè) C. 10個(gè) D. 前三個(gè)答案都不對(duì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,為測(cè)得河對(duì)岸塔的高,先在河岸上選一點(diǎn),使在塔底的正東方向上,測(cè)得點(diǎn)的仰角為60°,再由點(diǎn)沿北偏東15°方向走到位置,測(cè)得,則塔的高是(單位:)( )
A. B. C. D. 10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列五個(gè)正方體圖形中,是正方體的一條對(duì)角線,點(diǎn)M,N,P分別為其所在棱的中點(diǎn),求能得出⊥面MNP的圖形的序號(hào)(寫出所有符合要求的圖形序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)和向量
(1)若向量與向量同向,且,求點(diǎn)的坐標(biāo);
(2)若向量與向量的夾角是鈍角,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測(cè)試中,卷面滿分為100分,考生得分為整數(shù),規(guī)定60分及以上為及格.某調(diào)研課題小組為了調(diào)查午休對(duì)考生復(fù)習(xí)效果的影響,對(duì)午休和不午休的考生進(jìn)行了測(cè)試成績(jī)的統(tǒng)計(jì),數(shù)據(jù)如下表:
(1)根據(jù)上述表格完成下列列聯(lián)表:
(2)判斷“能否在犯錯(cuò)誤的概率不超過0.010的前提下認(rèn)為成績(jī)及格與午休有關(guān)”?
(參考公式:,其中.)
0.010 | 0.05 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若α是第一象限角,則sinα+cosα的值與1的大小關(guān)系是( )
A. sinα+cosα>1B. sinα+cosα=1C. sinα+cosα<1D. 不能確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com