【題目】給定區(qū)域D: .令點集T={(x0 , y0)∈D|x0 , y0∈Z,(x0 , y0)是z=x+y在D上取得最大值或最小值的點},則T中的點共確定條不同的直線.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)設(shè)0<x<,求函數(shù)y=x(3﹣2x)的最大值;
(2)解關(guān)于x的不等式x2-(a+1)x+a<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某小區(qū)抽取100戶居民進行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50至350度之間,頻率分布直方圖如圖所示:
(Ⅰ)直方圖中x的值為;
(Ⅱ)在這些用戶中,用電量落在區(qū)間[100,250)內(nèi)的戶數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,點C是圓O上異于A,B的點,直線PC⊥平面ABC,E,F(xiàn)分別是PA,PC的中點.
(1)記平面BEF與平面ABC的交線為l,試判斷直線l與平面PAC的位置關(guān)系,并加以證明;
(2)設(shè)(1)中的直線l與圓O的另一個交點為D,且點Q滿足 .記直線PQ與平面ABC所成的角為θ,異面直線PQ與EF所成的角為α,二面角E﹣l﹣C的大小為β.求證:sinθ=sinαsinβ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)n是正整數(shù),r為正有理數(shù).
(1)求函數(shù)f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;
(參考數(shù)據(jù): .
(2)證明: ;
(3)設(shè)x∈R,記[x]為不小于x的最小整數(shù),例如 .令 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間共有12名工人,隨機抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
(1)根據(jù)莖葉圖計算樣本均值;
(2)日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱錐中,底面是矩形,平面,,分別是,的中點,與平面所成的角的正切值是;
(1)求證:平面;
(2)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的公比為q,記bn=am(n﹣1)+1+am(n﹣1)+2+…+am(n﹣1)+m , cn=am(n﹣1)+1am(n﹣1)+2…am(n﹣1)+m , (m,n∈N*),則以下結(jié)論一定正確的是( )
A.數(shù)列{bn}為等差數(shù)列,公差為qm
B.數(shù)列{bn}為等比數(shù)列,公比為q2m
C.數(shù)列{cn}為等比數(shù)列,公比為
D.數(shù)列{cn}為等比數(shù)列,公比為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側(cè)棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k,(k>0)
(1)求證:CD⊥平面ADD1A1
(2)若直線AA1與平面AB1C所成角的正弦值為 ,求k的值
(3)現(xiàn)將與四棱柱ABCD﹣A1B1C1D1形狀和大小完全相同的兩個四棱柱拼成一個新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為f(k),寫出f(k)的解析式.(直接寫出答案,不必說明理由)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com