【題目】朱世杰是歷史上最偉大的數(shù)學(xué)家之一,他所著的《四元玉鑒》卷中如像招數(shù)五問中有如下問題:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉(zhuǎn)多七人,每人日支米三升。其大意為官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始每天派出的人數(shù)比前一天多7人,修筑堤壩的每人每天分發(fā)大米3,在該問題中第3天共分發(fā)大米(

A. 192 B. 213 C. 234 D. 255

【答案】C

【解析】

根據(jù)題意設(shè)每天派出的人數(shù)組成數(shù)列,分析可得數(shù)列是首項(xiàng),公差數(shù)的等差數(shù)列,由等差數(shù)列的通項(xiàng)公式可得的值,又根據(jù)每人每天分發(fā)大米升,計(jì)算可得答案

根據(jù)題意設(shè)每天派出的人數(shù)組成數(shù)列

分析可得數(shù)列是首項(xiàng),公差數(shù)的等差數(shù)列,

則第三天派出的人數(shù)為,且

又根據(jù)每人每天分發(fā)大米

則第天共分發(fā)大米

故選

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足:Sn為數(shù)列{an}的前n項(xiàng)和,且2,an , Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若cn=nan , 求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,P是橢圓上一點(diǎn),|PF1|=λ|PF2|,∠F1PF2=,則橢圓離心率的取值范圍為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩臺(tái)車床加工同一種機(jī)械零件如下表:

分類

合格品

次品

總計(jì)

第一臺(tái)車床加工的零件數(shù)

35

5

40

第二臺(tái)車床加工的零件數(shù)

50

10

60

總計(jì)

85

15

100

從這100個(gè)零件中任取一個(gè)零件,求:

(1)取得合格品的概率;

(2)取得零件是第一臺(tái)車床加工的合格品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式ax2﹣bx﹣1>0的解集是 ,則不等式x2﹣bx﹣a≥0的解集是( )
A.{x|2<x<3}
B.{x|x≤2或x≥3}
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)在(0, )上處處可導(dǎo),若[f(x)﹣f′(x)]tanx﹣f(x)<0,則( )
A.一定小于
B.一定大于
C.可能大于
D.可能等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱柱ABCD﹣A1B1C1D1的底面ABCD為正方形,AA1⊥AC,M、N分別為棱AA1、CC1的中點(diǎn).

(1)求證:直線MN⊥平面B1BD;
(2)已知AA1=AB,AA1⊥AB,取線段C1D1的中點(diǎn)Q,求二面角Q﹣MD﹣N的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的鍍鋅鐵皮材料ABCD,上沿DC為圓弧,其圓心為A,圓半徑為2米,AD⊥AB,BC⊥AB,且BC=1米,F(xiàn)要用這塊材料裁一個(gè)矩形PEAF(其中P在圓弧DC上、E在線段AB上,F(xiàn)在線段AD上)做圓柱的側(cè)面,若以PE為母線,問如何裁剪可使圓柱的體積最大?其最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為,它的一個(gè)頂點(diǎn)恰好是拋物線x2=4y的焦點(diǎn).

(1)求橢圓C的方程;

(2)直線x=2與橢圓交于P,Q兩點(diǎn),P點(diǎn)位于第一象限,A,B是橢圓上位于直線x=2兩側(cè)的動(dòng)點(diǎn).

若直線AB的斜率為,求四邊形APBQ面積的最大值;

當(dāng)點(diǎn)A,B運(yùn)動(dòng)時(shí),滿足∠APQ=∠BPQ,問直線AB的斜率是否為定值,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案