【題目】兩臺(tái)車(chē)床加工同一種機(jī)械零件如下表:
分類(lèi) | 合格品 | 次品 | 總計(jì) |
第一臺(tái)車(chē)床加工的零件數(shù) | 35 | 5 | 40 |
第二臺(tái)車(chē)床加工的零件數(shù) | 50 | 10 | 60 |
總計(jì) | 85 | 15 | 100 |
從這100個(gè)零件中任取一個(gè)零件,求:
(1)取得合格品的概率;
(2)取得零件是第一臺(tái)車(chē)床加工的合格品的概率.
【答案】(1)0.85; (2).
【解析】
根據(jù)概率公式計(jì)算即可
先求出第一臺(tái)加工的概率,再求出第一臺(tái)加工的合格品的概率,即可求得答案
(1)記在100個(gè)零件中任取一個(gè)零件,取得合格品記為A,因?yàn)樵?00個(gè)零件中,有85個(gè)為合格品,
則P(A)==0.85.
(2)從100個(gè)零件中任取一個(gè)零件是第一臺(tái)加工的概率為P1=,
第一臺(tái)車(chē)床加工的合格品的概率為P2=,
所以取得零件是第一臺(tái)車(chē)床加工的合格品的概率P=P1·P2=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,ABCD為矩形,PA⊥平面ABCD,PA=AD,M,N,Q分別是PC,AB,CD的中點(diǎn).
求證:(1)MN∥平面PAD;
(2)平面QMN∥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:若m>2,則方程x2+2x+3m=0無(wú)實(shí)根,寫(xiě)出該命題的逆命題、否命題和逆否命題,并判斷真假.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交通部門(mén)對(duì)某路段公路上行駛的汽車(chē)速度實(shí)施監(jiān)控,從速度在50﹣90km/h的汽車(chē)中抽取150輛進(jìn)行分析,得到數(shù)據(jù)的頻率分布直方圖如圖所示,則速度在70km/h以下的汽車(chē)有輛.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,已知橢圓C: =1(a>b>0)的離心率e= ,左頂點(diǎn)為A(﹣4,0),過(guò)點(diǎn)A作斜率為k(k≠0)的直線(xiàn)l交橢圓C于點(diǎn)D,交y軸于點(diǎn)E.
(1)求橢圓C的方程;
(2)已知P為AD的中點(diǎn),是否存在定點(diǎn)Q,對(duì)于任意的k(k≠0)都有OP⊥EQ,若存在,求出點(diǎn)Q的坐標(biāo);若不存在說(shuō)明理由;
(3)若過(guò)O點(diǎn)作直線(xiàn)l的平行線(xiàn)交橢圓C于點(diǎn)M,求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃購(gòu)買(mǎi)2臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買(mǎi)這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購(gòu)買(mǎi),則每個(gè)500元.現(xiàn)需決策在購(gòu)買(mǎi)機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買(mǎi)幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
以這100臺(tái)機(jī)器更換的易損零件數(shù)的頻率代替1臺(tái)機(jī)器更換的易損零件數(shù)發(fā)生的概率,記X表示2臺(tái)機(jī)器三年內(nèi)共需更換的易損零件數(shù),n表示購(gòu)買(mǎi)2臺(tái)機(jī)器的同時(shí)購(gòu)買(mǎi)的易損零件數(shù).
(1)求X的分布列;
(2)若要求P(X≤n)≤0.5,確定n的最小值;
(3)以購(gòu)買(mǎi)易損零件所需費(fèi)用的期望值為決策依據(jù),在n=19與n=20之中選其一,應(yīng)選用哪個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】朱世杰是歷史上最偉大的數(shù)學(xué)家之一,他所著的《四元玉鑒》卷中“如像招數(shù)”五問(wèn)中有如下問(wèn)題:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉(zhuǎn)多七人,每人日支米三升”。其大意為“官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開(kāi)始每天派出的人數(shù)比前一天多7人,修筑堤壩的每人每天分發(fā)大米3升”,在該問(wèn)題中第3天共分發(fā)大米( )
A. 192升 B. 213升 C. 234升 D. 255升
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由代數(shù)式的乘法法則類(lèi)比推導(dǎo)向量的數(shù)量積的運(yùn)算法則:
①“mn=nm”類(lèi)比得到“a·b=b·a”;
②“(m+n)t=mt+nt”類(lèi)比得到“(a+b)·c=a·c+b·c”;
③“t≠0,mt=ntm=n”類(lèi)比得到“c≠0,a·c=b·ca=b”;
④“|m·n|=|m|·|n|”類(lèi)比得到“|a·b|=|a|·|b|”;
⑤“(m·n)t=m(n·t)”類(lèi)比得到“(a·b)·c=a(b·c)”;
⑥“”類(lèi)比得到.以上的式子中,類(lèi)比得到的結(jié)論正確的是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x3+ax2+bx+1的導(dǎo)數(shù)滿(mǎn)足,其中常數(shù)a,b∈R.
(1)求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(2)設(shè),求函數(shù)g(x)的極值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com