【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且a1+a3=30,2S2是3S1和S3的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足,求數(shù)列{bn}前n項(xiàng)和Tn.
【答案】(Ⅰ)an=3n,n∈N*;(Ⅱ)Tn=2﹣(n+2)()n.
【解析】
(Ⅰ)由,是和的等差中項(xiàng),可得,,化簡(jiǎn),利用等比數(shù)列的通項(xiàng)公式即可得出.
(Ⅱ)由化簡(jiǎn)可得,再利用錯(cuò)位相減法即可求出.
(Ⅰ)等比數(shù)列{an}的公比為q,前n項(xiàng)和為Sn,且a1+a3=30,2S2是3S1和S3的等差中項(xiàng).
可得a1+a1q2=30,4S2=3S1+S3,即有4(a1+a1q)=3a1+a1+a1q+a1q2,
解得a1=q=3,則an=3n,n∈N*;
(Ⅱ)(2n+1)()n,
前n項(xiàng)和Tn=357(2n+1)()n,
Tn=357(2n+1)()n+1,
相減可得Tn=1+2(()n)﹣(2n+1)()n+1=1+2(2n+1)()n+1,
化簡(jiǎn)可得Tn=2﹣(n+2)()n.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)對(duì)定義域內(nèi)的任意,當(dāng)時(shí),總有,則稱函數(shù)為單調(diào)函數(shù),例如函數(shù)是單純函數(shù),但函數(shù)不是單純函數(shù),下列命題:
①函數(shù)是單純函數(shù);
②當(dāng)時(shí),函數(shù)在是單純函數(shù);
③若函數(shù)為其定義域內(nèi)的單純函數(shù), ,則
④若函數(shù)是單純函數(shù)且在其定義域內(nèi)可導(dǎo),則在其定義域內(nèi)一定存在使其導(dǎo)數(shù),其中正確的命題為__________.(填上所有正確的命題序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是橢圓的左、右焦點(diǎn),橢圓的短軸長為,點(diǎn)是橢圓上的一點(diǎn),過點(diǎn)作軸的垂線交橢圓于另一點(diǎn)(不過點(diǎn)),且的周長的最大值為8.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過焦點(diǎn),在橢圓上取兩點(diǎn),連接,與軸的交點(diǎn)分別為,過點(diǎn)作橢圓的切線,當(dāng)四邊形為菱形時(shí),證明:直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若存在,對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若函數(shù)的導(dǎo)函數(shù)是奇函數(shù),則稱函數(shù)是“雙奇函數(shù)”.函數(shù).
(1)若函數(shù)是“雙奇函數(shù)”,求實(shí)數(shù)的值;
(2)若時(shí),討論函數(shù)的極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以為焦點(diǎn)的拋物線過點(diǎn),直線與交于,兩點(diǎn),為中點(diǎn),且.
(1)當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(2)當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解高一新生的體能情況,在入學(xué)后不久,組織了一次體能測(cè)試,按成績分為優(yōu)秀、良好、一般、較差四個(gè)檔次.現(xiàn)隨機(jī)抽取120名學(xué)生的成績,其條形圖如下:
(1)將優(yōu)秀、良好、一般歸為合格,較差歸為不合格,試根據(jù)條形圖完成下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為學(xué)生的成績與性別有關(guān).
合格 | 不合格 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
(2)學(xué)校為了解學(xué)生以前參加課外活動(dòng)的情況,利用分層抽樣的方法從120名學(xué)生中抽取24名學(xué)生參加一個(gè)座談會(huì).
①座談會(huì)上抽取2名學(xué)生匯報(bào)以前參加課外活動(dòng)的情況,求恰好抽到測(cè)試成績一個(gè)優(yōu)秀與一個(gè)較差的學(xué)生的概率;
②為全面提高學(xué)生的體能,學(xué)校專門安排專職教師對(duì)全校測(cè)試成績較差的學(xué)生在課外活動(dòng)時(shí)進(jìn)行專項(xiàng)訓(xùn)練,通過一段時(shí)間的訓(xùn)陳后,測(cè)試合格率達(dá)到了.若某班有4名學(xué)生參加這個(gè)專項(xiàng)訓(xùn)陳,求訓(xùn)練后測(cè)試合格人數(shù)ξ的分布列與數(shù)學(xué)期望.
附:K2,其中n=a+b+c+d
P(K2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,射線與圓交于點(diǎn),橢圓的方程為,以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立平面直角坐標(biāo)系
(1)求點(diǎn)的直角坐標(biāo)和橢圓的參數(shù)方程;
(2)若為橢圓的下頂點(diǎn),為橢圓上任意一點(diǎn),求的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com