【題目】在四棱錐中,四邊形為菱形,且,,分別為棱,的中點(diǎn).
(1)求證:平面;
(2)若平面,,求平面與平面所成二面角的正弦值.
【答案】(1)見證明(2)
【解析】
(1)設(shè)的中點(diǎn)為,連接,,先證明,即證平面;(2)連接,,設(shè),連接,連接. 分別以,,為軸,軸,軸的非負(fù)半軸,建立如圖所示的空間直角坐標(biāo)系.再利用向量方法求平面與平面所成二面角的正弦值為.
(1)證明:設(shè)的中點(diǎn)為,連接,.
∵,分別是,的中點(diǎn),
∴,且.
由已知得,且.
∴,且.
∴四邊形是平行四邊形.
∴.
∵平面,平面,
∴平面.
(2)連接,,設(shè),連接,連接.
設(shè)菱形的邊長為,由題設(shè)得,,,
平面,分別以,,為軸,軸,軸的非負(fù)半軸,建立如圖所示的空間直角坐標(biāo)系.
由題設(shè)得,,,,,
∴,.
設(shè)是平面的法向量,
則,化簡得,
令,則,.∴.
同理可求得平面的一個(gè)法向量.
∴.
∴平面與平面所成二面角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(Ⅰ)當(dāng)為偶函數(shù)時(shí),求函數(shù)的極值;
(Ⅱ)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年春節(jié)期間,我國高速公路繼續(xù)執(zhí)行“節(jié)假日高速免費(fèi)政策”.某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速收費(fèi)點(diǎn)處記錄了大年初三上午9:20~10:40這一時(shí)間段內(nèi)通過的車輛數(shù),統(tǒng)計(jì)發(fā)現(xiàn)這一時(shí)間段內(nèi)共有600輛車通過該收費(fèi)點(diǎn),它們通過該收費(fèi)點(diǎn)的時(shí)刻的頻率分布直方圖如圖所示,其中時(shí)間段9:20~9:40記作區(qū)間,9:40~10:00記作,10:00~10:20記作,10:20~10:40記作.比方:10點(diǎn)04分,記作時(shí)刻64.
(1)估計(jì)這600輛車在9:20~10:40時(shí)間段內(nèi)通過該收費(fèi)點(diǎn)的時(shí)刻的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)為了對(duì)數(shù)據(jù)進(jìn)行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機(jī)抽取4輛,記為9:20~10:00之間通過的車輛數(shù),求的分布列與數(shù)學(xué)期望;
(3)由大數(shù)據(jù)分析可知,車輛在春節(jié)期間每天通過該收費(fèi)點(diǎn)的時(shí)刻服從正態(tài)分布,其中可用這600輛車在9:20~10:40之間通過該收費(fèi)點(diǎn)的時(shí)刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表),已知大年初五全天共有1000輛車通過該收費(fèi)點(diǎn),估計(jì)在9:46~10:40之間通過的車輛數(shù)(結(jié)果保留到整數(shù)).
參考數(shù)據(jù):若,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的左焦點(diǎn)為,過點(diǎn)F做x軸的垂線交橢圓于A,B兩點(diǎn),且.
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若M,N為橢圓上異于點(diǎn)A的兩點(diǎn),且直線的傾斜角互補(bǔ),問直線MN的斜率是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某輪船公司年初以200萬元購進(jìn)一艘輪船,以每年40萬元的價(jià)格出租給海運(yùn)公司.輪船公司負(fù)責(zé)輪船的維護(hù),第一年維護(hù)費(fèi)為4萬元,隨著輪船的使用與磨損,以后每年的維護(hù)費(fèi)比上一年多2萬元,同時(shí)該輪船第年末可以以萬元的價(jià)格出售.
(1)寫出輪船公司到第年末所得總利潤萬元關(guān)于的函數(shù)解析式,并求的最大值;
(2)為使輪船公司年平均利潤最大,輪船公司應(yīng)在第幾年末出售輪船?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,底面是矩形,平面,AB 1,AP AD 2.
(1)求直線與平面所成角的正弦值;
(2)若點(diǎn)M,N分別在AB,PC上,且平面,試確定點(diǎn)M,N的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面立角坐標(biāo)系中,過點(diǎn)的圓的圓心在軸上,且與過原點(diǎn)傾斜角為的直線相切.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)在直線上,過點(diǎn)作圓的切線、,切點(diǎn)分別為、,求經(jīng)過、、、四點(diǎn)的圓所過的定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定數(shù)列,若滿足且,對(duì)于任意的n,,都有,則稱數(shù)列為“指數(shù)型數(shù)列”.
Ⅰ已知數(shù)列,的通項(xiàng)公式分別為,,試判斷,是不是“指數(shù)型數(shù)列”;
Ⅱ若數(shù)列滿足:,,判斷數(shù)列是否為“指數(shù)型數(shù)列”,若是給出證明,若不是說明理由;
Ⅲ若數(shù)列是“指數(shù)型數(shù)列”,且,證明:數(shù)列中任意三項(xiàng)都不能構(gòu)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“工資條里顯紅利,個(gè)稅新政人民心”.隨著2019年新年鐘聲的敲響,我國自1980年以來,力度最大的一次個(gè)人所得稅(簡稱個(gè)稅)改革迎來了全面實(shí)施的階段.2019年1月1日實(shí)施的個(gè)稅新政主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為5000元;(2)每月應(yīng)納稅所得額(含稅)=收入-個(gè)稅起征點(diǎn)-專項(xiàng)附加扣除;(3)專項(xiàng)附加扣除包括住房、子女教育和贍養(yǎng)老人等.
新舊個(gè)稅政策下每月應(yīng)納稅所得額(含稅)計(jì)算方法及其對(duì)應(yīng)的稅率表如下:
舊個(gè)稅稅率表(個(gè)稅起征點(diǎn)3500元) | 新個(gè)稅稅率表(個(gè)稅起征點(diǎn)5000元) | |||
繳稅級(jí)數(shù) | 每月應(yīng)納稅所得額(含稅)=收入-個(gè)稅起征點(diǎn) | 稅率(%) | 每月應(yīng)納稅所得額(含稅)=收入-個(gè)稅起征點(diǎn)-專項(xiàng)附加扣除 | 稅率(%) |
1 | 不超過1500元部分 | 3 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元部分 | 10 | 超過3000元至12000元部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 超過12000元至25000元的部分 | 20 |
4 | 超過9000元至35000元的部分 | 25 | 超過25000元至35000元的部分 | 25 |
5 | 超過35000元至55000元部分 | 30 | 超過35000元至55000元部分 | 30 |
··· | ··· | ··· | ··· | ··· |
隨機(jī)抽取某市1000名同一收入層級(jí)的從業(yè)者的相關(guān)資料,經(jīng)統(tǒng)計(jì)分析,預(yù)估他們2019年的人均月收入24000元.統(tǒng)計(jì)資料還表明,他們均符合住房專項(xiàng)扣除;同時(shí),他們每人至多只有一個(gè)符合子女教育扣除的孩子,并且他們之中既不符合子女教育扣除又不符合贍養(yǎng)老人扣除、只符合子女教育扣除但不符合贍養(yǎng)老人扣除、只符合贍養(yǎng)老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合贍養(yǎng)老人扣除的人數(shù)之比是2:1:1:1;此外,他們均不符合其他專項(xiàng)附加扣除.新個(gè)稅政策下該市的專項(xiàng)附加扣除標(biāo)準(zhǔn)為:住房1000元/月,子女教育每孩1000元/月,贍養(yǎng)老人2000元/月等。
假設(shè)該市該收入層級(jí)的從業(yè)者都獨(dú)自享受專項(xiàng)附加扣除,將預(yù)估的該市該收入層級(jí)的從業(yè)者的人均月收入視為其個(gè)人月收入.根據(jù)樣本估計(jì)總體的思想,解決如下問題:
(1)設(shè)該市該收入層級(jí)的從業(yè)者2019年月繳個(gè)稅為元,求的分布列和期望;
(2)根據(jù)新舊個(gè)稅方案,估計(jì)從2019年1月開始,經(jīng)過多少個(gè)月,該市該收入層級(jí)的從業(yè)者各月少繳交的個(gè)稅之和就超過2019年的月收入?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com