【題目】如圖所示,在四棱錐中,底面是矩形,平面,AB 1,AP AD 2.
(1)求直線與平面所成角的正弦值;
(2)若點M,N分別在AB,PC上,且平面,試確定點M,N的位置.
【答案】(1);(2)M為AB的中點,N為PC的中點
【解析】
(1)由題意知,AB,AD,AP兩兩垂直.以為正交基底,建立空間直角坐標系,求平面PCD的一個法向量為,由空間向量的線面角公式求解即可;(2)設 ,利用平面PCD,所以∥,得到的方程,求解即可確定M,N的位置
(1)由題意知,AB,AD,AP兩兩垂直.
以為正交基底,建立如圖所示的空間
直角坐標系,則
從而
設平面PCD的法向量
則即
不妨取則.
所以平面PCD的一個法向量為.
設直線PB與平面PCD所成角為所以
即直線PB與平面PCD所成角的正弦值為.
(2)設則
設則而
所以.由(1)知,平面PCD的一個法向量為,因為平面PCD,所以∥.
所以解得,.
所以M為AB的中點,N為PC的中點.
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是()
A. 銳角是第一象限的角,所以第一象限的角都是銳角;
B. 如果向量,則;
C. 在中,記,,則向量與可以作為平面ABC內(nèi)的一組基底;
D. 若,都是單位向量,則.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“冰桶挑戰(zhàn)賽”是一項社交網(wǎng)絡上發(fā)起的慈善公益活動,活動規(guī)定:被邀請者要么在24小時內(nèi)接受挑戰(zhàn),要么選擇為慈善機構(gòu)捐款(不接受挑戰(zhàn)),并且不能重復參加該活動.若被邀請者接受挑戰(zhàn),則他需在網(wǎng)絡上發(fā)布自己被冰水澆遍全身的視頻內(nèi)容,然后便可以邀請另外3個人參與這項活動.假設每個人接受挑戰(zhàn)和不接受挑戰(zhàn)是等可能的,且互不影響.
(1)若某參與者接受挑戰(zhàn)后,對其他3個人發(fā)出邀請,則這3個人中至少有2個人接受挑戰(zhàn)的概率是多少?
(2)為了解冰桶挑戰(zhàn)賽與受邀者的性別是否有關(guān),某調(diào)查機構(gòu)進行了隨機抽樣調(diào)查,調(diào)查得到如下列聯(lián)表:
性別 成績 | 接受挑戰(zhàn) | 不接受挑戰(zhàn) | 總計 |
男性 | 45 | 15 | 60 |
女性 | 25 | 15 | 40 |
總計 | 70 | 30 | 100 |
根據(jù)表中數(shù)據(jù),能有有90%的把握認為“冰桶挑戰(zhàn)賽與受邀者的性別有關(guān)”?
附:,其中.
2.706 | 3.841 | 6.635 | 10.828 | |
0.10 | 0.05 | 0.010 | 0.001 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點,且圓心C在直線x+y-1=0上.
(1)求圓C的方程;
(2)若直線l∥PQ,且l與圓C交于點A,B且以線段AB為直徑的圓經(jīng)過坐標原點,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知.
(1)求函數(shù)的最小正周期和對稱軸方程;
(2)若,求的值域.
【答案】(1)對稱軸為,最小正周期;(2)
【解析】
(1)利用正余弦的二倍角公式和輔助角公式將函數(shù)解析式進行化簡得到,由周期公式和對稱軸公式可得答案;(2)由x的范圍得到,由正弦函數(shù)的性質(zhì)即可得到值域.
(1)
令,則
的對稱軸為,最小正周期;
(2)當時,,
因為在單調(diào)遞增,在單調(diào)遞減,
在取最大值,在取最小值,
所以,
所以.
【點睛】
本題考查正弦函數(shù)圖像的性質(zhì),考查周期性,對稱性,函數(shù)值域的求法,考查二倍角公式以及輔助角公式的應用,屬于基礎(chǔ)題.
【題型】解答題
【結(jié)束】
21
【題目】已知等比數(shù)列的前項和為,公比,,.
(1)求等比數(shù)列的通項公式;
(2)設,求的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com