【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國(guó)特色社會(huì)主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如表:
AQI | ||||||
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 重度污染 |
天數(shù) | 6 | 14 | 18 | 27 | 25 | 10 |
(1)從空氣質(zhì)量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;
(2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失y(單位:元)與空氣質(zhì)量指數(shù)x的關(guān)系式為,假設(shè)該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染的概率分別為.9月每天的空氣質(zhì)量對(duì)應(yīng)的概率以表中100天的空氣質(zhì)量的頻率代替.
(i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失為X元,求X的分布列;
(ii)試問該企業(yè)7月、8月、9月這三個(gè)月因氣質(zhì)量造成的經(jīng)濟(jì)損失總額的數(shù)學(xué)期望是否會(huì)超過2.88萬元?說明你的理由.
【答案】(1);(2)(i)詳見解析;(ii)會(huì)超過;詳見解析
【解析】
(1)利用組合進(jìn)行計(jì)算以及概率表示,可得結(jié)果.
(2)(i)寫出X所有可能取值,并計(jì)算相對(duì)應(yīng)的概率,列出表格可得結(jié)果.
(ii)由(i)的條件結(jié)合7月與8月空氣質(zhì)量所對(duì)應(yīng)的概率,可得7月與8月經(jīng)濟(jì)損失的期望和,最后7月、8月、9月經(jīng)濟(jì)損失總額的數(shù)學(xué)期望與2.88萬元比較,可得結(jié)果.
(1)設(shè)ξ為選取的3天中空氣質(zhì)量為優(yōu)的天數(shù),
則P(ξ=2),P(ξ=3),
則這3天中空氣質(zhì)量至少有2天為優(yōu)的概率
為;
(2)(i),
,
,
X的分布列如下:
X | 0 | 220 | 1480 |
P |
(ii)由(i)可得:
E(X)=02201480302(元),
故該企業(yè)9月的經(jīng)濟(jì)損失的數(shù)學(xué)期望為30E(X),
即30E(X)=9060元,
設(shè)7月、8月每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失為Y元,
可得:,
,,
E(Y)=02201480320(元),
所以該企業(yè)7月、8月這兩個(gè)月因空氣質(zhì)量造成
經(jīng)濟(jì)損失總額的數(shù)學(xué)期望為320×(31+31)=19840(元),
由19840+9060=28900>28800,
即7月、8月、9月這三個(gè)月因空氣質(zhì)量造成
經(jīng)濟(jì)損失總額的數(shù)學(xué)期望會(huì)超過2.88萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)參加一項(xiàng)射擊比賽游戲,其中任何一人每射擊一次擊中目標(biāo)得2分,未擊中目標(biāo)得0分.若甲、乙兩人射擊的命中率分別為和,且甲、乙兩人各射擊一次得分之和為2的概率為.假設(shè)甲、乙兩人射擊互不影響,則值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,對(duì)于,,定義A與B的差為;A與B之間的距離為.
(I)若,試寫出所有可能的A,B;
(II),證明:
(i);
(ii)三個(gè)數(shù)中至少有一個(gè)是偶數(shù);
(III)設(shè),中有m(,且為奇數(shù))個(gè)元素,記P中所有兩元素間距離的平均值為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣x+1,g(x)=ex﹣ax,a∈R.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若g(x)≥1在R上恒成立,求a的值;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上有唯一的極值點(diǎn),求的取值范圍,并證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是函數(shù)定義域內(nèi)的一個(gè)子集,若存在,使得成立,則稱是的一個(gè)“不動(dòng)點(diǎn)”,也稱在區(qū)間上存在不動(dòng)點(diǎn).
設(shè)函數(shù),.
(1)若,求函數(shù)的不動(dòng)點(diǎn);
(2)若函數(shù)在上不存在不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐P ABC中,PA⊥平面ABC,Q是BC邊上的一個(gè)動(dòng)點(diǎn),且直線PQ與面ABC所成角的最大值為則該三棱錐外接球的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求實(shí)數(shù)的取值范圍;
(2)若有兩個(gè)不同的極值點(diǎn),,且,若不等式恒成立.求正實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com