【題目】三棱錐P ABC中,PA⊥平面ABC,Q是BC邊上的一個動點,且直線PQ與面ABC所成角的最大值為則該三棱錐外接球的表面積為(  )

A. B. C. D.

【答案】C

【解析】

根據(jù)題意畫出圖形,結(jié)合圖形找出△ABC的外接圓圓心與三棱錐P﹣ABC外接球的球心,

求出外接球的半徑,再計算它的表面積.

三棱錐P﹣ABC中,PA⊥平面ABC,直線PQ與平面ABC所成角為θ,

如圖所示;則sinθ==,且sinθ的最大值是,

(PQ)min=2AQ的最小值是,即ABC的距離為

AQBC,AB=2,在RtABQ中可得,即可得BC=6;

取△ABC的外接圓圓心為O′,作OO′PA,

=2r,解得r=2;

O′A=2,

HPA的中點,∴OH=O′A=2,PH=

由勾股定理得OP=R==,

∴三棱錐P﹣ABC的外接球的表面積是

S=4πR2=4×=57π.

故答案為:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有極值.

(1)求的取值范圍;

(2)若處取得極值,且當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2﹣2x﹣3≤0,x∈R},B={x|(x﹣m+2)(x﹣m﹣2)≤0,x∈R,m∈R}.
(1)若A∩B={x|0≤x≤3},求實數(shù)m的值;
(2)若ARB,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右頂點為,點在橢圓上,為坐標原點,且,則橢圓的離心率的取值范圍為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某建筑工地搭建的腳手架局部類似于一個 的長方體框架,一個建筑工人欲從處沿腳手架攀登至 處,則其最近的行走路線中不連續(xù)向上攀登的概率為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+ )(ω>0),將函數(shù)y=f(x)的圖象向右平移 個單位長度后,所得圖象與原函數(shù)圖象重合ω最小值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P ABCD中,E是棱PC上一點,且2,底面ABCD是邊長為2的正方形,△PAD為正三角形,平面ABE與棱PD交于點F,平面PCD與平面PAB交于直線l,且平面PAD⊥平面ABCD.

(1)求證:l∥EF;

(2)求四棱錐P-ABEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的四棱錐S﹣ABCD中,SA⊥底面ABCD,∠DAB=∠ABC=90°,SA=AB=BC=a,AD=3a(a>0),E為線段BS上的一個動點.

(1)證明:DE和SC不可能垂直;
(2)當點E為線段BS的三等分點(靠近B)時,求二面角S﹣CD﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的S為( 。

A.2
B.
C.-
D.-3

查看答案和解析>>

同步練習(xí)冊答案