【題目】已知函數(shù))在定義域內(nèi)有兩個不同的極值點.

1)求實數(shù)的取值范圍;

2)若有兩個不同的極值點,,且,若不等式恒成立.求正實數(shù)的取值范圍.

【答案】1;(2.

【解析】

1)求導得到有兩個不相等實根,令,計算函數(shù)單調(diào)區(qū)間得到值域,得到答案.

2,是方程的兩根,故,化簡得到,設函數(shù),討論范圍,計算最值得到答案.

1)由題可知有兩個不相等的實根,

即:有兩個不相等實根,令

,

,,,

上單增,在上單減,∴.

,時,時,

,即.

2)由(1)知,是方程的兩根,

,則

因為單減,∴,又,∴

,兩邊取對數(shù),并整理得:

恒成立,

,,

時,恒成立,

上單增,故恒成立,符合題意;

時,,

上單減,,不符合題意.

綜上,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測數(shù)據(jù),結(jié)果統(tǒng)計如表:

AQI

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

重度污染

天數(shù)

6

14

18

27

25

10

1)從空氣質(zhì)量指數(shù)屬于[050],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;

2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟損失y(單位:元)與空氣質(zhì)量指數(shù)x的關系式為,假設該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴重污染的概率分別為.9月每天的空氣質(zhì)量對應的概率以表中100天的空氣質(zhì)量的頻率代替.

i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟損失為X元,求X的分布列;

ii)試問該企業(yè)7月、8月、9月這三個月因氣質(zhì)量造成的經(jīng)濟損失總額的數(shù)學期望是否會超過2.88萬元?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015秋?谛<壠谥校┲本l過點(1,2)和第一、二、四象限,若直線l的橫截距與縱截距之和為6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)如圖,長方形材料中,已知,.點為材料內(nèi)部一點,,,且,. 現(xiàn)要在長方形材料中裁剪出四邊形材料,滿足,點、分別在邊,上.

(1)設,試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;

(2)試確定點上的位置,使得四邊形材料的面積最小,并求出其最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的各項均為正整數(shù),Sn為其前n項和,對于n1,23,,有,其中為使為奇數(shù)的正整數(shù),當時,的最小值為__________;當時,___________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)令函數(shù)是自然對數(shù)的底數(shù),若函數(shù)有且只有一個零點,判斷的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】趙爽是我國古代數(shù)學家、天文學家,大約公元222年,趙爽為《周碑算經(jīng)》一書作序時,介紹了勾股圓方圖,又稱趙爽弦圖(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比趙爽弦圖,可類似地構(gòu)造如圖(2)所示的圖形,它是由3個全等的三角形與中間的一個小正三角形組成的一個大正三角形,設,若在大正三角形中隨機取一點,則此點取自小正三角形的概率為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓左、右頂點分別為AB,上頂點為D(0,1),離心率為.

1)求橢圓C的標準方程;

2)若點E是橢圓C上位于x軸上方的動點,直線AEBE與直線分別交于M、N兩點,當線段MN的長度最小時,橢圓C上是否存在點T使的面積為?若存在,求出點T的坐標:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(12分)已知函數(shù)

(1)若x=2是函數(shù)f(x)的極值點,求曲線y=f(x)在點(1,f(1))處的切線方程;

(2)若函數(shù)f(x)在 上為單調(diào)增函數(shù),求a的取值范圍;

(3)設m,n為正實數(shù),且m>n,求證:

查看答案和解析>>

同步練習冊答案