【題目】已知函數(shù).
(1)當(dāng)時,求曲線在點處的切線方程.
(2)當(dāng)時,若對任意的,都有,求實數(shù)a的取值范圍.
【答案】(1);(2).
【解析】
(1)求得時的導(dǎo)數(shù),可得切線的斜率和切點,由點斜式方程可得所求切線方程;
(2)求得的導(dǎo)數(shù),討論,,的單調(diào)區(qū)間,考慮在,的單調(diào)性,求得最小值,可令其不小于,解不等式可得所求范圍.
解:(1)當(dāng)時,,
所以,
所以曲線在點處的切線斜率,
又,所以曲線在點處的切線方程為,即.
(2)由,
得.
當(dāng)時,,在上單調(diào)遞增,
則,顯然成立;
當(dāng)時,由,得;
由,得,
所以在上單調(diào)遞減,在和上單調(diào)遞增.
①時,,在上單調(diào)遞減,
所以,
所以對任意的,都有等價于,
即,
解得,
又,所以;
②當(dāng)時,,
所以在上的最小值為.
又當(dāng)時,,顯然成立.
綜上,實數(shù)a的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐中,菱形所在的平面,是中點,是上的點.
(1)求證:平面平面;
(2)若是的中點,當(dāng)時,是否存在點,使直線與平面的所成角的正弦值為?若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C和橢圓有公共的焦點,且離心率為.
(1)求雙曲線C的方程.
(2)經(jīng)過點M(2,1)作直線l交雙曲線C于A,B兩點,且M為AB的中點,求直線l的方程并求弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中,角所對的邊分別為,滿足.
(1)求的大。
(2)如圖,,在直線的右側(cè)取點,使得.當(dāng)角為何值時,四邊形面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓離心率為,四個頂點構(gòu)成的四邊形的面積是4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓C交于P,Q均在第一象限,直線OP,OQ的斜率分別為,,且(其中O為坐標(biāo)原點).證明:直線l的斜率k為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)是偶函數(shù),若方程在區(qū)間(其中為自然對數(shù)的底)上有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABCA1B1C1中,AB=AC,A1C⊥BC1,AB1⊥BC1,D,E分別是AB1和BC的中點.
求證:(1)DE∥平面ACC1A1;
(2)AE⊥平面BCC1B1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).M是曲線上的動點,將線段OM繞O點順時針旋轉(zhuǎn)得到線段ON,設(shè)點N的軌跡為曲線.以坐標(biāo)原點O為極點,軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)在(1)的條件下,若射線與曲線分別交于A, B兩點(除極點外),且有定點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出如下四個命題:①若“且”為假命題,則均為假命題;②命題“若,則”的否命題為“若,則”; ③“,則”的否定是“,則”;④在中,“”是“”的充要條件.其中正確的命題的個數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com