【題目】某小區(qū)停車場的收費標準為:每車每次停車時間不超過2小時免費,超過2小時的部分每小時收費1元(不足1小時的部分按1小時計算).現(xiàn)有甲乙兩人相互獨立到停車場停車(各停車一次),且兩人停車的時間均不超過5小時,設甲、乙兩人停車時間(小時)與取車概率如下表所示:

(1)求甲、乙兩人所付車費相同的概率;

(2)設甲、乙兩人所付停車費之和為隨機變量,求的分布列及數(shù)學期望.

【答案】(1) 甲、乙兩人所付停車費相同的概率為;(2)見解析.

【解析】試題分析:(1)首先求出x、y,個人停車所付費用相同即停車時間相同:都不超過兩小時、都在兩小時以上且不超過三小時和都超過三小時且不超過四小時三類求解即可.

(2)隨機變量ξ的所有取值為0,1、2,3,4,5,由獨立事件的概率分別求概率,列出分布列,再由期望的公式求期望即可

解:

(1)由題意得,∴,

,∴.

記甲、乙兩人所付停車費相同為事件,則,

∴甲、乙兩人所付停車費相同的概率為.

(2)設甲、乙兩人所付的費用之和為 的可能取值為0,1,2,3,4,5,

, , ,

, , ,

的分布列為:

0

1

2

3

4

5

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+ )(ω>0)的圖象與y=2的圖象的兩相鄰交點的距離為π,要得到y(tǒng)=2sinωx的圖象,只需把y=f(x)的圖象(
A.向右平移
B.向左平移
C.向左平移
D.向右平移

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣
(1)求函數(shù)f(x)的單調區(qū)間;
(2)設g(x)=﹣x2+2bx﹣4,若對任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2) 恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

有一個側面是正三角形的四棱錐如圖(1),它的三視圖如圖(2).

(Ⅰ)證明: 平面;

(Ⅱ)求平面與正三角形側面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別為內角A,B,C的對邊,且asinB=﹣bsin(A+ ).
(1)求A;
(2)若△ABC的面積S= c2 , 求sinC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年某市政府出臺了“2020年創(chuàng)建全國文明城市(簡稱創(chuàng)文)”的具體規(guī)劃,今日,作為“創(chuàng)文”項目之一的“市區(qū)公交站點的重新布局及建設”基本完成,市有關部門準備對項目進行調查,并根據(jù)調查結果決定是否驗收,調查人員分別在市區(qū)的各公交站點隨機抽取若干市民對該項目進行評分,并將結果繪制成如圖所示的頻率分布直方圖,相關規(guī)則為:①調查對象為本市市民,被調查者各自獨立評分;②采用百分制評分, 內認定為滿意,80分及以上認定為非常滿意;③市民對公交站點布局的滿意率不低于60%即可進行驗收;④用樣本的頻率代替概率.

(1)求被調查者滿意或非常滿意該項目的頻率;

(2)若從該市的全體市民中隨機抽取3人,試估計恰有2人非常滿意該項目的概率;

(3)已知在評分低于60分的被調查者中,老年人占,現(xiàn)從評分低于60分的被調查者中按年齡分層抽取9人以便了解不滿意的原因,并從中選取2人擔任群眾督察員,記為群眾督查員中老年人的人數(shù),求隨機變量的分布列及其數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當a=﹣2時,求不等式f(x)<g(x)的解集;
(2)設a>﹣1,且當x∈(﹣ , )時,f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知離散型隨機變量X的分布列如表:

X

﹣1

0

1

2

P

a

b

c

若E(X)=0,D(X)=1,則a,b的值分別為(
A. ,
B. ,
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求函數(shù)f(x)=x2﹣2ax﹣1在[2,+∞)上的最小值.

查看答案和解析>>

同步練習冊答案