【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且asinB=﹣bsin(A+ ).
(1)求A;
(2)若△ABC的面積S= c2 , 求sinC的值.

【答案】
(1)解:∵asinB=﹣bsin(A+ ).

∴由正弦定理可得:sinAsinB=﹣sinBsin(A+ ).即:sinA=﹣sin(A+ ).

可得:sinA=﹣ sinA﹣ cosA,化簡可得:tanA=﹣

∵A∈(0,π),

∴A=


(2)解:∵A= ,

∴sinA= ,

∵由S= c2= bcsinA= bc,可得:b= ,

∴a2=b2+c2﹣2bccosA=7c2,可得:a= ,

由正弦定理可得:sinC=


【解析】(1)由正弦定理化簡已知可得tanA=﹣ ,結(jié)合范圍A∈(0,π),即可計(jì)算求解A的值.(2)由(1)可求sinA= ,利用三角形面積公式可求b= ,利用余弦定理可求a= ,由正弦定理即可計(jì)算求解.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解正弦定理的定義(正弦定理:),還要掌握余弦定理的定義(余弦定理:;;)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分14分)已知是函數(shù)的一個極值點(diǎn).

)求;

)求函數(shù)的單調(diào)區(qū)間;

)若直線與函數(shù)的圖象有3個交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直線坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.

(1)直線的普通方程和曲線的參數(shù)方程;

(2)設(shè)點(diǎn)上, 處的切線與直線垂直,求的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=2sin(2x+ )的圖象向右平移 個周期后,所得圖象對應(yīng)的函數(shù)為(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(2x﹣
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex(axb)-x2-4x,曲線yf(x)在點(diǎn)(0,f(0))處的切線方程為y=4x+4.

(1)求ab的值;

(2)討論f(x)的單調(diào)性,并求f(x)的極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)停車場的收費(fèi)標(biāo)準(zhǔn)為:每車每次停車時間不超過2小時免費(fèi),超過2小時的部分每小時收費(fèi)1元(不足1小時的部分按1小時計(jì)算).現(xiàn)有甲乙兩人相互獨(dú)立到停車場停車(各停車一次),且兩人停車的時間均不超過5小時,設(shè)甲、乙兩人停車時間(小時)與取車概率如下表所示:

(1)求甲、乙兩人所付車費(fèi)相同的概率;

(2)設(shè)甲、乙兩人所付停車費(fèi)之和為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形ABC中,AB=AC,D為CB延長線上一點(diǎn),E為BC延長線上一點(diǎn),且滿足AB2=DBCE.

(1)求證:△ADB∽△EAC;
(2)若∠BAC=40°,求∠DAE的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為實(shí)數(shù),函數(shù).

(1)若是函數(shù)的一個極值點(diǎn),求實(shí)數(shù)的取值;

(2)設(shè),若,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若偶函數(shù)f(x)在(﹣∞,﹣1]上是增函數(shù),則下列關(guān)系式中成立的是(
A.f(﹣ )<f(﹣1)<f(2)
B.f(﹣1)<f(﹣ )<f(2)
C.f(2)<f(﹣1)<f(﹣
D.f(2)<f(﹣ )<f(﹣1)

查看答案和解析>>

同步練習(xí)冊答案