已知點,是拋物線上相異兩點,且滿足.
(Ⅰ)若的中垂線經(jīng)過點,求直線的方程;
(Ⅱ)若的中垂線交軸于點,求的面積的最大值及此時直線的方程.
(Ⅰ)(Ⅱ).
解析試題分析:(Ⅰ) 利用導(dǎo)數(shù)分析單調(diào)性,進(jìn)而求最值;(Ⅱ)利用不等式的放縮和數(shù)列的裂項求和
試題解析:(I)方法一
(I)當(dāng)垂直于軸時,顯然不符合題意,
所以可設(shè)直線的方程為,代入方程得:
∴ 得: 2分
∴直線的方程為
∵中點的橫坐標(biāo)為1,∴中點的坐標(biāo)為 4分
∴的中垂線方程為
∵的中垂線經(jīng)過點,故,得 6分
∴直線的方程為 7分
(Ⅱ)由(I)可知的中垂線方程為,∴點的坐標(biāo)為 8分
因為直線的方程為
∴到直線的距離 10分
由 得,,
12分
∴, 設(shè),則,
,,由,得
在上遞增,在上遞減,當(dāng)時,有最大值
得:時,
直線方程為 15分
(本題若運(yùn)用基本不等式解決,也同樣給分)
法二:
(Ⅰ)當(dāng)垂直于軸時,顯然不符合題意,
當(dāng)不垂直于軸時,根據(jù)題意設(shè)的中點為,
則 2分
由、
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,點為動點,、分別為橢圓的左、右焦點.已知為等腰三角形.
(1)求橢圓的離心率;
(2)設(shè)直線與橢圓相交于、兩點,是直線上的點,滿足,求點的軌跡
方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓中心在坐標(biāo)原點,是它的兩個頂點,直線與直線相交于點D,與橢圓相交于兩點.
(Ⅰ)若,求的值;
(Ⅱ)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓長軸的左右端點分別為A,B,短軸的上端點為M,O為橢圓的中心,F(xiàn)為橢圓的右焦點,且·=1,||=1.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l交橢圓于P,Q兩點,問:是否存在直線l,使得點F恰為△PQM的垂心?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
經(jīng)過點且與直線相切的動圓的圓心軌跡為.點在軌跡上,且關(guān)于軸對稱,過線段(兩端點除外)上的任意一點作直線,使直線與軌跡在點處的切線平行,設(shè)直線與軌跡交于點.
(1)求軌跡的方程;
(2)證明:;
(3)若點到直線的距離等于,且的面積為20,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點,焦點在軸上,焦距為,且經(jīng)過點,直線交橢圓于不同的兩點A,B.
(1)求的取值范圍;,
(2)若直線不經(jīng)過點,求證:直線的斜率互為相反數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,橢圓C過點,兩個焦點為.
(1)求橢圓C的方程;
(2)是橢圓C上的兩個動點,如果直線的斜率與的斜率互為相反數(shù),證明直線的斜率為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的左右頂點分別為,離心率.過該橢圓上任一點作軸,垂足為,點在的延長線上,且.
(1)求橢圓的方程;
(2)求動點的軌跡的方程;
(3)設(shè)直線(點不同于)與直線交于點,為線段的中點,試判斷直線與曲線的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com