已知,橢圓C過點,兩個焦點為.
(1)求橢圓C的方程;
(2)是橢圓C上的兩個動點,如果直線的斜率與的斜率互為相反數(shù),證明直線的斜率為定值,并求出這個定值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是拋物線上的點,是的焦點, 以為直徑的圓與軸的另一個交點為.
(Ⅰ)求與的方程;
(Ⅱ)過點且斜率大于零的直線與拋物線交于兩點,為坐標(biāo)原點,的面積為,證明:直線與圓相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點,是拋物線上相異兩點,且滿足.
(Ⅰ)若的中垂線經(jīng)過點,求直線的方程;
(Ⅱ)若的中垂線交軸于點,求的面積的最大值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的長軸長為4,且過點.
(1)求橢圓的方程;
(2)設(shè)、、是橢圓上的三點,若,點為線段的中點,、兩點的坐標(biāo)分別為、,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線,點P(-1,0)是其準(zhǔn)線與軸的焦點,過P的直線與拋物線C交于A、B兩點.
(1)當(dāng)線段AB的中點在直線上時,求直線的方程;
(2)設(shè)F為拋物線C的焦點,當(dāng)A為線段PB中點時,求△FAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點在坐標(biāo)原點,焦點在軸上,且過點.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)與圓相切的直線交拋物線于不同的兩點若拋物線上一點滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C長軸的兩個頂點為A(-2,0),B(2,0),且其離心率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若N是直線x=2上不同于點B的任意一點,直線AN與橢圓C交于點Q,設(shè)直線QB與以NB為直徑的圓的一個交點為M(異于點B),求證:直線NM經(jīng)過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位.已知直線的參數(shù)方程為 (t為參數(shù),0<a<),曲線C的極坐標(biāo)方程為.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A、B兩點,當(dāng)a變化時,求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓的左、右焦點分別為F1(-1,0),F(xiàn)2(1,0),過F1作與x軸不重合的直線l交橢圓于A,B兩點.
(I)若ΔABF2為正三角形,求橢圓的離心率;
(II)若橢圓的離心率滿足,為坐標(biāo)原點,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com