已知橢圓長(zhǎng)軸的左右端點(diǎn)分別為A,B,短軸的上端點(diǎn)為M,O為橢圓的中心,F(xiàn)為橢圓的右焦點(diǎn),且·=1,||=1.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l交橢圓于P,Q兩點(diǎn),問:是否存在直線l,使得點(diǎn)F恰為△PQM的垂心?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

(Ⅰ)橢圓方程為;(Ⅱ)滿足題意的直線存在,方程為:.

解析試題分析:(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程,可采用待定系數(shù)法求方程, 設(shè)橢圓方程為,利用條件求的值,從而得方程,因?yàn)椋?img src="http://thumb.1010pic.com/pic5/tikupic/cc/3/kjrql3.png" style="vertical-align:middle;" />|=1,即,再由·=1,寫出,的坐標(biāo),從而求出的值,可得方程;(Ⅱ)此題屬于探索性命題,解此類問題,一般都假設(shè)成立,作為條件,能求出值,則成立,若求不出值,或得到矛盾的結(jié)論,則不存在,此題假設(shè)存在直線符合題意,設(shè)出直線方程,根據(jù)直線與二次曲線位置關(guān)系的解題方法,采用設(shè)而不求的解題思維,設(shè)的坐標(biāo),根據(jù)根與系數(shù)關(guān)系,來求出直線方程,值得注意的是,當(dāng)方程不恒有交點(diǎn)時(shí),需用判別式討論參數(shù)的取值范圍.
試題解析:(Ⅰ)設(shè)橢圓方程為,所以,又因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/0f/a/1dnht2.png" style="vertical-align:middle;" />,所以,則橢圓方程為;
(Ⅱ)假設(shè)存在直線符合題意。由題意可設(shè)直線方程為:,代入得:,,設(shè),則,,   解得: , 當(dāng)時(shí),三點(diǎn)共線,所以,所以,所以滿足題意的直線存在,方程為:.
考點(diǎn):本題考查橢圓的方程,直線與橢圓的位置關(guān)系,考查學(xué)生的運(yùn)算能力、化簡(jiǎn)能力以及數(shù)形結(jié)合的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知三點(diǎn)P(5,2)、F1(-6,0)、F2(6,0)。
(1)求以F1、F2為焦點(diǎn)且過點(diǎn)P的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)P、F1、F2關(guān)于直線y=x的對(duì)稱點(diǎn)分別為,求以為焦點(diǎn)且過點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是拋物線上的點(diǎn),的焦點(diǎn), 以為直徑的圓軸的另一個(gè)交點(diǎn)為.
(Ⅰ)求的方程;
(Ⅱ)過點(diǎn)且斜率大于零的直線與拋物線交于兩點(diǎn),為坐標(biāo)原點(diǎn),的面積為,證明:直線與圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在原點(diǎn),焦點(diǎn)F在軸上,離心率,點(diǎn)在橢圓C上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率為的直線交橢圓兩點(diǎn),且、成等差數(shù)列,點(diǎn)M(1,1),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線(a>0,b>0)的離心率,過點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離是
(Ⅰ)求雙曲線的方程及漸近線方程;
(Ⅱ)若直線y=kx+5 (k≠0)與雙曲線交于不同的兩點(diǎn)C、D,且兩點(diǎn)都在以A為圓心的同一個(gè)圓上,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

拋物線M: 的準(zhǔn)線過橢圓N: 的左焦點(diǎn),以坐標(biāo)原點(diǎn)為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點(diǎn)A與點(diǎn)B,直線AB與x軸相交于點(diǎn)C.

(1)求拋物線M的方程.
(2)設(shè)點(diǎn)A的橫坐標(biāo)為x1,點(diǎn)C的橫坐標(biāo)為x2,曲線M上點(diǎn)D的橫坐標(biāo)為x1+2,求直線CD的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn),是拋物線上相異兩點(diǎn),且滿足
(Ⅰ)若的中垂線經(jīng)過點(diǎn),求直線的方程;
(Ⅱ)若的中垂線交軸于點(diǎn),求的面積的最大值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的長(zhǎng)軸長(zhǎng)為4,且過點(diǎn)
(1)求橢圓的方程;
(2)設(shè)、、是橢圓上的三點(diǎn),若,點(diǎn)為線段的中點(diǎn),、兩點(diǎn)的坐標(biāo)分別為、,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位.已知直線的參數(shù)方程為 (t為參數(shù),0<a<),曲線C的極坐標(biāo)方程為
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A、B兩點(diǎn),當(dāng)a變化時(shí),求|AB|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案