【題目】已知三棱錐A﹣BCD的各個(gè)棱長(zhǎng)都相等,E,F(xiàn)分別是棱AB,CD的中點(diǎn),則EF與BC所成的角是( )
A.90°
B.60°
C.45°
D.30°
【答案】C
【解析】解:如圖,
三棱錐A﹣BCD的各個(gè)棱長(zhǎng)都相等,設(shè)為2,
取AC中點(diǎn)G,連接EG,GF,則∠GEF為EF與BC所成的角,
且EG=GF=1,BF= ,
正四面體A﹣BCD的高為 ,
過(guò)E作EH⊥BF于H,則EH= ,
∴ ,
∴△EGF是以∠EGF為直角的等腰直角三角形,則∠GEF=45°.
故選:C.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用異面直線及其所成的角,掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將半徑都為1的4個(gè)鋼球完全裝入形狀為正四面體的容器里,這個(gè)正四面體的高的最小值為( )
A.
B.2+
C.4+
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種產(chǎn)品的廣告費(fèi)支出x與銷售額(單位:百萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):
如果y與x之間具有線性相關(guān)關(guān)系.
(1)作出這些數(shù)據(jù)的散點(diǎn)圖;
(2)求這些數(shù)據(jù)的線性回歸方程;
(3)預(yù)測(cè)當(dāng)廣告費(fèi)支出為9百萬(wàn)元時(shí)的銷售額.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面是邊長(zhǎng)是1的正方形,側(cè)棱PA與底面成45°的角,M,N,分別是AB,PC的中點(diǎn);
(1)求證:MN∥平面PAD;
(2)求四棱錐P﹣ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校在2014年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如下表所示.
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 | [160,165) | 5 | 0.050 |
第2組 | [165,170) | n | 0.350 |
第3組 | [170,175) | 30 | p |
第4組 | [175,180) | 20 | 0.200 |
第5組 | [180,185] | 10 | 0.100 |
合計(jì) | 100 | 1.000 |
(1)求頻率分布表中n,p的值,并補(bǔ)充完整相應(yīng)的頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,則第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定從6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有1名學(xué)生被甲考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知球內(nèi)接四棱錐的高為相交于,球的表面積為,若為中點(diǎn).
(1)求異面直線和所成角的余弦值;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線與圓交于, 兩點(diǎn).
(1)求圓的直角坐標(biāo)方程及弦的長(zhǎng);
(2)動(dòng)點(diǎn)在圓上(不與, 重合),試求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】霧霾天氣是一種大氣污染狀態(tài),PM2.5被認(rèn)為是造成霧霾天氣的“元兇”,PM2.5日均值越小,空氣質(zhì)量越好.國(guó)家環(huán)境標(biāo)準(zhǔn)設(shè)定的PM2.5日均值(微克/立方米)與空氣質(zhì)量等級(jí)對(duì)應(yīng)關(guān)系如表:
PM2.5日均值 | 0﹣﹣35 | 35﹣﹣75 | 75﹣﹣115 | 115﹣﹣150 | 150﹣﹣250 | 250以上 |
空氣質(zhì)量等級(jí) | 1級(jí) | 2級(jí) | 3級(jí) | 4級(jí) | 5級(jí) | 6級(jí) |
由某市城市環(huán)境監(jiān)測(cè)網(wǎng)獲得4月份某5天甲、乙兩城市的空氣質(zhì)量指數(shù)數(shù)據(jù),用莖葉圖表示,如圖所示.
(1)試根據(jù)統(tǒng)計(jì)數(shù)據(jù),分別寫出兩城區(qū)的PM2.5日均值的中位數(shù),并從中位數(shù)角度判斷哪個(gè)城區(qū)的空氣質(zhì)量較好?
(2)考慮用頻率估計(jì)概率的方法,試根據(jù)統(tǒng)計(jì)數(shù)據(jù),估計(jì)甲城區(qū)某一天空氣質(zhì)量等級(jí)為3
(3)分別從甲、乙兩個(gè)城區(qū)的統(tǒng)計(jì)數(shù)據(jù)中任取一個(gè),試求這兩城區(qū)空氣質(zhì)量等級(jí)相同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】| |=1,| |= , =0,點(diǎn)C在∠AOB內(nèi),且∠AOC=30°,設(shè) =m +n (m、n∈R),則 等于( )
A.
B.3
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com