【題目】已知.

)當,判斷的奇偶性,并說明理由;

)當,,的值;

)若,且對任何不等式恒成立,求實數(shù)的取值范圍.

【答案】既不是奇函數(shù),也不是偶函數(shù);(;()當,的取值范圍是;當,的取值范圍是;當,的取值范圍是.

【解析】

試題()對函數(shù)奇偶性的判斷,一定要結(jié)合函數(shù)特征先作大致判斷,然后再根據(jù)奇函數(shù)偶函數(shù)的定義作嚴格的證明.,,從解析式可以看出它既不是奇函數(shù),也不是偶函數(shù).對既不是奇函數(shù),也不是偶函數(shù)的函數(shù),一般取兩個特殊值說明.

)當,, ,這是一個含有絕對值符號的不等式,對這種不等式,一般先分情況去絕對值符號.這又是一個含有指數(shù)式的不等式,對這種不等式,一般將指數(shù)式看作一個整體,先求出指數(shù)式的值,然后再利用指數(shù)式求出的值.

)不等式恒成立的問題,一般有以下兩種考慮,一是分離參數(shù),二是直接求最值.在本題中,分離參數(shù)比較容易.分離參數(shù)時需要除以,故首先考慮的情況. 易得,取任意實數(shù),不等式恒成立.

,此時原不等式變?yōu)?/span>;即,這時應滿足:,所以接下來就求的最大值和的最小值.在求這個最大值和最小值時,因數(shù)還有一個參數(shù),所以又需要對進行討論.

試題解析:()當,既不是奇函數(shù)也不是偶函數(shù)

,∴

所以既不是奇函數(shù),也不是偶函數(shù) 3

)當,,

解得

所以8

)當,取任意實數(shù),不等式恒成立,

故只需考慮,此時原不等式變?yōu)?/span>;即

又函數(shù)上單調(diào)遞增,所以;

對于函數(shù)

,單調(diào)遞減,,,

所以,此時的取值范圍是

,,,

,,此時要使存在,

必須有,此時的取值范圍是

綜上,,的取值范圍是;

,的取值范圍是;

,的取值范圍是13

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設雙曲線 的左右焦點分別為,過的直線分別交雙曲線左右兩支于點M,N.若以MN為直徑的圓經(jīng)過點,則雙曲線的離心率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),在以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,點P的極坐標為,直線l的極坐標方程為.

(1)求直線l的直角坐標方程與曲線C的普通方程;

(2)Q是曲線C上的動點,M為線段PQ的中點,直線l上有兩點A,B,始終滿足|AB|4,求MAB面積的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知函數(shù)

1)當時,求的單調(diào)區(qū)間;

2)設函數(shù),若的唯一極值點,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線的焦點為,經(jīng)過軸正半軸上點的直線于不同的兩點.

1)若,求點的坐標;

2)若,求證:原點總在以線段為直徑的圓的內(nèi)部;

3)若,且直線有且只有一個公共點,問:△的面積是否存在最小值?若存在,求出最小值,并求出點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次高三年級模擬考試中,數(shù)學試卷有一道滿分10分的選做題,學生可以從AB兩道題目中任選一題作答.某校有900名高三學生參加了本次考試,為了了解該校學生解答該選做題的得分情況,作為下一步教學的參考依據(jù),計劃從900名考生的選做題成績中隨機抽取一個容量為10的樣本,為此將900名考生選做題的成績按照隨機順序依次編號為001~900.

1)若采用系統(tǒng)抽樣法抽樣,從編號為001~090的成績中用簡單隨機抽樣確定的成績編號為025,求樣本中所有成績編號之和;

2)若采用分層抽樣,按照學生選擇A題目或B題目,將成績分為兩層.已知該校高三學生有540人選做A題目,有360人選做B題目,選取的樣本中,A題目的成績平均數(shù)為5,方差為2,B題目的成績平均數(shù)為5.5,方差為0.25.

i)用樣本估計該校這900名考生選做題得分的平均數(shù)與方差;

ii)本選做題閱卷分值都為整數(shù),且選取的樣本中,A題目成績的中位數(shù)和B題目成績的中位數(shù)都是5.5.從樣本中隨機選取兩個大于樣本平均值的數(shù)據(jù)做進一步調(diào)查,求取到的兩個成績來自不同題目的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ABC的三個內(nèi)角AB,C所對的邊分別是a,b,c,向量(cos B,cos C)(2ac,b),且

(1)求角B的大小;

(2)b,求ac的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,的前n項和為

1)若,求證:,其中,

2)若對任意均有,求的通項公式;

3)若對任意均有,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由中央電視臺綜合頻道和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青年電視公開課.每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機調(diào)查了、兩個地區(qū)的100名觀眾,得到如下的列聯(lián)表,已知在被調(diào)查的100名觀眾中隨機抽取1名,該觀眾是地區(qū)當中滿意的觀眾的概率為0.15

1)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進行問卷調(diào)查,則應抽取滿意、地區(qū)的人數(shù)各是多少;

2)在(1)的條件下,從抽取到滿意的人中隨機抽取2人,設抽到的觀眾來自不同的地區(qū)為事件,求事件的概率;

3)完成上述表格,并根據(jù)表格判斷是否有的把握認為觀眾的滿意程度與所在地區(qū)有關系.

附:參考公式:.

查看答案和解析>>

同步練習冊答案