【題目】設(shè)拋物線的焦點(diǎn)為,經(jīng)過軸正半軸上點(diǎn)的直線于不同的兩點(diǎn).

1)若,求點(diǎn)的坐標(biāo);

2)若,求證:原點(diǎn)總在以線段為直徑的圓的內(nèi)部;

3)若,且直線,有且只有一個(gè)公共點(diǎn),問:△的面積是否存在最小值?若存在,求出最小值,并求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

【答案】1;(2)證明見解析;(3)存在,最小值2,.

【解析】

1)由拋物線方程以及拋物線定義,根據(jù)求出橫坐標(biāo),代入,即可得出點(diǎn)的坐標(biāo);

2)設(shè),,設(shè)直線的方程是:,聯(lián)立直線與拋物線方程,根據(jù)韋達(dá)定理,以及向量數(shù)量積運(yùn)算,得到,推出恒為鈍角,即可得結(jié)論成立;

3)設(shè),則,由,推出直線的斜率.設(shè)直線的方程為,代入拋物線方程,根據(jù)判別式等于零,得.設(shè),則,,由三角形面積公式,以及基本不等式,即可求出結(jié)果.

1)由拋物線方程知,焦點(diǎn)是,準(zhǔn)線方程為,

設(shè)及拋物線定義知,,代入,

所以點(diǎn)的坐標(biāo)

2)設(shè),

設(shè)直線的方程是:,

聯(lián)立,消去得:,由韋達(dá)定理得

所以,

恒為鈍角,

故原點(diǎn)總在以線段AB為直徑的圓的內(nèi)部.

3)設(shè),則,

因?yàn)?/span>,則,由,故

故直線的斜率

因?yàn)橹本和直線平行,設(shè)直線的方程為,代入拋物線方程

,由題意,得

設(shè),則

,

當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,

,解得(舍),

所以點(diǎn)的坐標(biāo)為,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某小區(qū)2017年1月至2018年1月當(dāng)月在售二手房均價(jià)(單位:萬元/平方米)的散點(diǎn)圖.(圖中月份代碼1—13分別對(duì)應(yīng)2017年1月—2018年1月)

由散點(diǎn)圖選擇兩個(gè)模型進(jìn)行擬合,經(jīng)過數(shù)據(jù)處理得到兩個(gè)回歸方程分別為,并得到以下一些統(tǒng)計(jì)量的值:

殘差平方和

0.000591

0.000164

總偏差平方和

0.006050

(1)請(qǐng)利用相關(guān)指數(shù)判斷哪個(gè)模型的擬合效果更好;

(2)某位購房者擬于2018年6月份購買這個(gè)小區(qū)平方米的二手房(欲

購房為其家庭首套房).若購房時(shí)該小區(qū)所有住房的房產(chǎn)證均已滿2年但未滿5年,請(qǐng)你利用(1)中擬合效果更好的模型估算該購房者應(yīng)支付的購房金額.(購房金額=房款+稅費(fèi);房屋均價(jià)精確到0.001萬元/平方米)

附注:根據(jù)有關(guān)規(guī)定,二手房交易需要繳納若干項(xiàng)稅費(fèi),稅費(fèi)是按房屋的計(jì)稅價(jià)格進(jìn)行征收.(計(jì)稅價(jià)格=房款),征收方式見下表:

契稅

(買方繳納)

首套面積90平方米以內(nèi)(含90平方米)為1%;首套面積90平方米以上且144平方米以內(nèi)(含144平方米)為1.5%;面積144平方米以上或非首套為3%

增值稅

(賣方繳納)

房產(chǎn)證未滿2年或滿2年且面積在144平方米以上(不含144平方米)為5.6%;其他情況免征

個(gè)人所得稅

(賣方繳納)

首套面積144平方米以內(nèi)(含144平方米)為1%;面積144平方米以上或非首套均為1.5%;房產(chǎn)證滿5年且是家庭唯一住房的免征

參考數(shù)據(jù):,,,,,,. 參考公式:相關(guān)指數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定函數(shù)、,定義.

1)證明:

2)若,,證明:是周期函數(shù);

3)若,,,證明:是周期函數(shù)的充要條件是為有理數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點(diǎn)為是拋物線上關(guān)于軸對(duì)稱的兩點(diǎn),點(diǎn)是拋物線準(zhǔn)線軸的交點(diǎn),是面積為的直角三角形.

1)求拋物線的方程;

2)點(diǎn)在拋物線上,是直線上不同的兩點(diǎn),且線段的中點(diǎn)都在拋物線上,試用表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動(dòng),在,實(shí)驗(yàn)地分別用甲、乙方法培訓(xùn)該品種花苗.為觀測(cè)其生長(zhǎng)情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各50株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為80及以上的花苗為優(yōu)質(zhì)花苗.

(1)求圖中的值;

(2)填寫下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).

優(yōu)質(zhì)花苗

非優(yōu)質(zhì)花苗

合計(jì)

甲培育法

20

乙培育法

10

合計(jì)

附:下面的臨界值表僅供參考.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

)當(dāng)時(shí),判斷的奇偶性,并說明理由;

)當(dāng)時(shí),,的值;

)若,且對(duì)任何不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的極坐標(biāo)方程和的直角坐標(biāo)方程;

2)設(shè)是曲線上一點(diǎn),此時(shí)參數(shù),將射線繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)交曲線于點(diǎn),記曲線的上頂點(diǎn)為點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是圓上的一動(dòng)點(diǎn),點(diǎn),點(diǎn)在線段上,且滿足.

(1)求點(diǎn)的軌跡的方程;

(2)設(shè)曲線軸的正半軸,軸的正半軸的交點(diǎn)分別為點(diǎn),斜率為的動(dòng)直線交曲線兩點(diǎn),其中點(diǎn)在第一象限,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由中央電視臺(tái)綜合頻道和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青年電視公開課.每期節(jié)目由一位知名人士講述自己的故事,分享他們對(duì)于生活和生命的感悟,給予中國青年現(xiàn)實(shí)的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時(shí)也在討論青春中國的社會(huì)問題,受到青年觀眾的喜愛,為了了解觀眾對(duì)節(jié)目的喜愛程度,電視臺(tái)隨機(jī)調(diào)查了、兩個(gè)地區(qū)的100名觀眾,得到如下的列聯(lián)表,已知在被調(diào)查的100名觀眾中隨機(jī)抽取1名,該觀眾是地區(qū)當(dāng)中非常滿意的觀眾的概率為0.4

非常滿意

滿意

合計(jì)

35

10

  

  

合計(jì)

  

  

  

1)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進(jìn)行問卷調(diào)查,則應(yīng)抽取非常滿意、地區(qū)的人數(shù)各是多少.

2)完成上述表格,并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系.

0.050

0.010

0.001

3.841

6.635

10.828

附:參考公式:.

3)若以抽樣調(diào)查的頻率為概率,從、兩個(gè)地區(qū)隨機(jī)抽取2人,設(shè)抽到的觀眾非常滿意的人數(shù)為,求的分布列和期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案