【題目】在某城市街道上一側(cè)路邊邊緣某處安裝路燈,路寬米,燈桿長(zhǎng)4米,且與燈柱角,路燈采用可旋轉(zhuǎn)燈口方向的錐形燈罩,燈罩軸線與燈的邊緣光線(如圖, )都成角,當(dāng)燈罩軸線與燈桿垂直時(shí),燈罩軸線正好通過的中點(diǎn)

I求燈柱的高為多少米;

II設(shè),且,求燈所照射路面寬度的最小值

【答案】III

【解析】試題分析:(1)連接設(shè),則,在直角與直角中,根據(jù)直角三角形的性質(zhì)可得,解得從而可得;(2)以為坐標(biāo)原點(diǎn), , 分別為軸,建立直角坐標(biāo)系,可求出 ,所以,切化弦后利用兩角和與差的正弦公式以及輔助角公式可得,結(jié)合,可得到取最小值.

試題解析:1)連接設(shè),則

在直角, ,

在直角, ,

則有,解得 ,

在直角 .

2為坐標(biāo)原點(diǎn), , 分別為軸,建立直角坐標(biāo)系,則

,又

①若,由(1)知,

②若,

則直線的方程為,則;

直線的方程為,則

所以

==

,所以當(dāng)且僅當(dāng)時(shí), 取最小值

綜合①②知,當(dāng)時(shí), 取最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).

(1)求他們選擇的項(xiàng)目所屬類別互不相同的概率;

(2)ξ3人中選擇的項(xiàng)目屬于基礎(chǔ)設(shè)施工程或產(chǎn)業(yè)建設(shè)工程的人數(shù),求ξ的分布列及均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列滿足,其中,且, 為常數(shù).

(1)若是等差數(shù)列,且公差,求的值;

(2)若,且存在,使得對(duì)任意的都成立,求的最小值;

(3)若,且數(shù)列不是常數(shù)列,如果存在正整數(shù),使得對(duì)任意的均成立. 求所有滿足條件的數(shù)列的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的內(nèi)角A, B, C的對(duì)邊分別為a, b, c,.

求角C的大。

Ⅱ)設(shè)角A的平分線交BCD,且AD=,若b=,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直三棱柱中, ,點(diǎn), 分別是的中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)若二面角的大小為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圖,在三棱柱中,平面平面,且均為正三角形.

(1)在上找一點(diǎn),使得平面,并說明理由.

(2)若的面積為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),圓,以動(dòng)點(diǎn)為圓心的圓經(jīng)過點(diǎn),且圓與圓內(nèi)切.

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)若直線過點(diǎn),且與曲線交于兩點(diǎn),則在軸上是否存在一點(diǎn),使得軸平分?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】煉鋼是一個(gè)氧化降碳的過程鋼水含碳量的多少直接影響冶煉時(shí)間的長(zhǎng)短,必須掌握鋼水含碳量和冶煉時(shí)間的關(guān)系.如果已測(cè)得爐料溶化完畢時(shí)鋼水的含碳量x與冶煉時(shí)間y(從爐料溶化完畢到出鋼的時(shí)間)的一組數(shù)據(jù)如表所示:

x(0.01%)

104

180

190

177

147

134

150

191

204

121

y/min

100

200

210

185

155

135

170

205

235

125

(1)yx是否具有線性相關(guān)關(guān)系?

(2)如果yx具有線性相關(guān)關(guān)系,求回歸直線方程.

(3)預(yù)報(bào)當(dāng)鋼水含碳量為160個(gè)0.01%時(shí),應(yīng)冶煉多少分鐘?

參考公式:r  

線性回歸方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,底面是邊長(zhǎng)為2的等邊三角形,平面于點(diǎn),且平面.

(1)求證: ;

(2)若四邊形是正方形,且,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案