【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為圓心的圓與直線:相切.

1)求圓的方程;

2)若圓上有兩點(diǎn)關(guān)于直線對(duì)稱,且,求直線MN的方程;

3)圓x軸相交于AB兩點(diǎn),圓內(nèi)的動(dòng)點(diǎn)P使|PA|、|PO||PB|成等比數(shù)列,求的取值范圍.

【答案】1.(2.3.

【解析】

(1)關(guān)鍵是利用點(diǎn)到直線的距離求出半徑.

2)可設(shè)直線MN的方程為.則圓心到直線MN的距離.由垂徑分弦定理得:,從而解出m的值.

(3) 不妨設(shè).由

設(shè),由成等比數(shù)列,得,即=,再根據(jù)點(diǎn)P在圓內(nèi),確定出y的取值范圍,進(jìn)而確定的取值范圍.

解:(1)依題設(shè),圓的半徑等于原點(diǎn)到直線的距離,

得圓的方程為

2)由題意,可設(shè)直線MN的方程為.

則圓心到直線MN的距離

由垂徑分弦定理得:,即.

所以直線MN的方程為:

3)不妨設(shè).由

設(shè),由成等比數(shù)列,得

,即

=

由于點(diǎn)在圓內(nèi),故由此得

所以的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 的左、右焦點(diǎn)為F1,F2,設(shè)點(diǎn)F1,F2與橢圓短軸的一個(gè)端點(diǎn)構(gòu)成斜邊長(zhǎng)為4的直角三角形.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè)AB,P為橢圓C上三點(diǎn),滿足,記線段AB中點(diǎn)Q的軌跡為E,若直線lyx1與軌跡E交于M,N兩點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為創(chuàng)建全國(guó)衛(wèi)生城市,引入某公司的智能垃圾處理設(shè)備.已知每臺(tái)設(shè)備每月固定維護(hù)成本萬元,每處理一萬噸垃圾需增加萬元維護(hù)費(fèi)用,每月處理垃圾帶來的總收益萬元與每月垃圾處理量(萬噸)滿足關(guān)系:(注:總收益=總成本+利潤(rùn))

1)寫出每臺(tái)設(shè)備每月處理垃圾獲得的利潤(rùn)關(guān)于每月垃圾處理量的函數(shù)關(guān)系;

2)該市計(jì)劃引入臺(tái)這種設(shè)備,當(dāng)每臺(tái)每月垃圾處理量為何值時(shí),所獲利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在棱長(zhǎng)為的正方體中,分別是棱,的中點(diǎn).

求證:(1)四邊形是梯形;

(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:

年份

2012

2013

2014

2015

2016

2017

年份代碼t

1

2

3

4

5

6

年產(chǎn)量y(萬噸)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(Ⅱ)根據(jù)線性回歸方程預(yù)測(cè)2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.(參考數(shù)據(jù):,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體P﹣ABCD中,平面ABCD⊥平面PAB ,四邊形ABCD為矩形,△PAB為正三角形,若AB=2,AD=1,E,F(xiàn) 分別為AC,BP中點(diǎn).

(1)求證:EF∥平面PCD;

(2)求直線DP與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐PABC中,ACBCACBC2,PAPBPC3OAB中點(diǎn),EPB中點(diǎn).

1)證明:平面PAB⊥平面ABC;

2)求點(diǎn)B到平面OEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵(lì)市民節(jié)約用電,某市實(shí)行“階梯式”電價(jià),將每戶居民的月用電量分為二檔,月用電量不超過200度的部分按0.5元/度收費(fèi),超過200度的部分按0.8元/度收費(fèi).某小區(qū)共有居民1000戶,為了解居民的用電情況,通過抽樣,獲得了今年7月份100戶居民每戶的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖.

(1)求的值;

(2)試估計(jì)該小區(qū)今年7月份用電量用不超過260元的戶數(shù);

(3)估計(jì)7月份該市居民用戶的平均用電費(fèi)用(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖,長(zhǎng)方形材料中,已知,.點(diǎn)為材料內(nèi)部一點(diǎn),,,且,. 現(xiàn)要在長(zhǎng)方形材料中裁剪出四邊形材料,滿足,點(diǎn)分別在邊,上.

(1)設(shè),試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;

(2)試確定點(diǎn)上的位置,使得四邊形材料的面積最小,并求出其最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案