【題目】某市為了改善居民的休閑娛樂活動場所,現(xiàn)有一塊矩形草坪如下圖所示,已知:米,米,擬在這塊草坪內(nèi)鋪設三條小路、和,要求點是的中點,點在邊上,點在邊時上,且.
(1)設,試求的周長關于的函數(shù)解析式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條路每米鋪設費用均為元,試問如何設計才能使鋪路的總費用最低?并求出最低總費用.
【答案】(1),定義域為;
(2)當米時,鋪路總費用最低,最低總費用為元.
【解析】
(1)利用勾股定理通過,得出,結(jié)合實際情況得出該函數(shù)的定義域;
(2)設,由題意知,要使得鋪路總費用最低,即為求的周長最小,求出的取值范圍,根據(jù)該函數(shù)的單調(diào)性可得出的最小值.
(1)由題意,在中,,,,,
中,,,,又,
,
所以,即.
當點在點時,這時角最小,求得此時;
當點在點時,這時角最大,求得此時.
故此函數(shù)的定義域為;
(2)由題意知,要求鋪路總費用最低,只需要求的周長的最小值即可.
由(1)得,,
設,,
則,
由,得,,則,
從而,當,即當時,,
答:當米時,鋪路總費用最低,最低總費用為元.
科目:高中數(shù)學 來源: 題型:
【題目】提升城市道路通行能力,可為市民提供更多出行便利.我校某研究性學習小組對成都市一中心路段(限行速度為千米/小時)的擁堵情況進行調(diào)查統(tǒng)計,通過數(shù)據(jù)分析發(fā)現(xiàn):該路段的車流速度(輛/千米)與車流密度(千米/小時)之間存在如下關系:如果車流密度不超過該路段暢通無阻(車流速度為限行速度);當車流密度在時,車流速度是車流密度的一次函數(shù);車流密度一旦達到該路段交通完全癱瘓(車流速度為零).
(1)求關于的函數(shù)
(2)已知車流量(單位時間內(nèi)通過的車輛數(shù))等于車流密度與車流速度的乘積,求此路段車流量的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲同學寫出三個不等式::,:,:,然后將的值告訴了乙、丙、丁三位同學,要求他們各用一句話來描述,以下是甲、乙、丙、丁四位同學的描述:
乙:為整數(shù);
丙:是成立的充分不必要條件;
丁:是成立的必要不充分條件;
甲:三位同學說得都對,則的值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某船在處測得燈塔在其南偏東方向上,該船繼續(xù)向正南方向行駛5海里到處,測得燈塔在其北偏東方向上,然后該船向東偏南方向行駛2海里到處,此時船到燈塔的距離為多少海里( )
A.千米B.千米C.6千米D.5千米
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(>0)的部分圖象如圖所示,A,B分別是這部分圖象上的最高點、最低點,為坐標原點,若·=0,則下列結(jié)論:①函數(shù)是周期為4的奇函數(shù);②函數(shù)是周期為4的偶函數(shù);③函數(shù)的最大值是;④函數(shù)向左平移個單位后得到的函數(shù)圖象關于原點對稱;其中錯誤命題的個數(shù)是( )
A.3B.2C.1D.0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等比數(shù)列的公比為,其前項和為,前項之積為,并且滿足條件:,,,下列結(jié)論中正確的是( )
A. B.
C. 是數(shù)列中的最大值 D. 數(shù)列無最小值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中e為自然對數(shù)的底數(shù).
(1)求證:函數(shù)是偶函數(shù);
(2)求證:函數(shù)在上單調(diào)遞減;
(3)求函數(shù)在閉區(qū)間上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求的最小正周期;
(2)求的最值及取最值時相應的x的值;
(3)求函數(shù)在的單調(diào)遞增區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com