【題目】如圖,在四棱錐中,底面為正方形,平面,,與交于點(diǎn),,分別為,的中點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)求證:∥平面;
(Ⅲ)求證:平面.
【答案】(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析
【解析】
(I)通過證明平面來證得平面平面.(II)取中點(diǎn),連接,通過證明四邊形為平行四邊形,證得,由此證得∥平面.(III)通過證明平面證得,通過計(jì)算證明證得,由此證得平面.
證明:(Ⅰ)因?yàn)?/span>平面,
所以.
因?yàn)?/span>,,
所以平面.
因?yàn)?/span>平面,
所以平面平面.
(Ⅱ)取中點(diǎn),連結(jié),因?yàn)?/span>為的中點(diǎn)
所以,且.
因?yàn)?/span>為的中點(diǎn),底面為正方形,
所以,且.
所以,且.
所以四邊形為平行四邊形.
所以.
因?yàn)?/span>平面且平面,
所以平面.
(Ⅲ)在正方形中,,
因?yàn)?/span>平面,
所以.
因?yàn)?/span>,
所以平面.
所以.
在△中,設(shè)交于.
因?yàn)?/span>,
且分別為的中點(diǎn),
所以.所以.
設(shè),由已知,
所以.所以.
所以.
所以,且為公共角,
所以△∽△.
所以.
所以.
因?yàn)?/span>,
所以平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)幾何體的三視圖如圖所示,該幾何體從上到下由四個(gè)簡單幾何體組成,其體積分別記為V1 , V2 , V3 , V4 , 上面兩個(gè)簡單幾何體均為旋轉(zhuǎn)體,下面兩個(gè)簡單幾何體均為多面體,則有( )
A.V1<V2<V4<V3
B.V1<V3<V2<V4
C.V2<V1<V3<V4
D.V2<V3<V1<V4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分別是AC,AB上的點(diǎn), ,O為BC的中點(diǎn).將△ADE沿DE折起,得到如圖2所示的四棱椎A(chǔ)′﹣BCDE,其中A′O= .
(1)證明:A′O⊥平面BCDE;
(2)求二面角A′﹣CD﹣B的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀如圖所示的程序框圖,若輸入的k=10,則該算法的功能是( )
A.計(jì)算數(shù)列{2n﹣1}的前10項(xiàng)和
B.計(jì)算數(shù)列{2n﹣1}的前9項(xiàng)和
C.計(jì)算數(shù)列{2n﹣1}的前10項(xiàng)和
D.計(jì)算數(shù)列{2n﹣1}的前9項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一正方體的表面展開圖.、、都是所在棱的中點(diǎn).則在原正方體中:①與異面;②平面;③平面平面;④與平面形成的線面角的正弦值是;⑤二面角的余弦值為.其中真命題的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x-ax+(a-1),。
(1)討論函數(shù)的單調(diào)性;
(2)證明:若,則對任意x,x,xx,有。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)學(xué)院讀書協(xié)會(huì)欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會(huì)分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如圖所示的頻率分布直方圖.該協(xié)會(huì)確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ)已知選取的是1月至6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)關(guān)于晝夜溫差的線性回歸方程;
(Ⅱ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問(Ⅰ)中該協(xié)會(huì)所得線性回歸方程是否理想?
參考公式:回歸直線的方程,
其中, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測試中,卷面滿分為100分,考生得分為整數(shù),規(guī)定60分及以上為及格.某調(diào)研課題小組為了調(diào)查午休對考生復(fù)習(xí)效果的影響,對午休和不午休的考生進(jìn)行了測試成績的統(tǒng)計(jì),數(shù)據(jù)如下表:
分?jǐn)?shù)段 | 0~39 | 40~49 | 50~59 | 60~69 | 70~79 | 80~89 | 90~100 |
午休考生人數(shù) | 29 | 34 | 37 | 29 | 23 | 18 | 10 |
不午休考生人數(shù) | 20 | 52 | 68 | 30 | 15 | 12 | 3 |
(1)根據(jù)上述表格完成下列列聯(lián)表:
及格人數(shù) | 不及格人數(shù) | 合計(jì) | |
午休 | |||
不午休 | |||
合計(jì) |
(2)判斷“能否在犯錯(cuò)誤的概率不超過0.010的前提下認(rèn)為成績及格與午休有關(guān)”?
0.10 | 0.05 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是由非負(fù)整數(shù)組成的無窮數(shù)列,該數(shù)列前n項(xiàng)的最大值記為An , 第n項(xiàng)之后各項(xiàng)an+1 , an+2…的最小值記為Bn , dn=An﹣Bn .
(1)若{an}為2,1,4,3,2,1,4,3…,是一個(gè)周期為4的數(shù)列(即對任意n∈N* , an+4=an),寫出d1 , d2 , d3 , d4的值;
(2)設(shè)d是非負(fù)整數(shù),證明:dn=﹣d(n=1,2,3…)的充分必要條件為{an}是公差為d的等差數(shù)列;
(3)證明:若a1=2,dn=1(n=1,2,3,…),則{an}的項(xiàng)只能是1或者2,且有無窮多項(xiàng)為1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com