16.若a,b是兩個正整數(shù),閱讀如圖的偽代碼.
(1)寫出此偽代碼的算法功能.
(2)參照此偽代碼,寫出求兩數(shù)a,b的最小公倍數(shù)的偽代碼.(注:兩數(shù)的最小公倍數(shù)等于這兩數(shù)的積除以這兩數(shù)的最大公約數(shù))

分析 (1)由已知中的程序代碼可得:此偽代碼求的是兩個正整數(shù)a,b的最大公約數(shù);
(2)根據(jù)最小公倍數(shù)與最大公約數(shù)的積,等于兩數(shù)的積,結(jié)合已知中的代碼,可得答案.

解答 解:(1)由已知中的程序代碼可得:
此偽代碼求的是兩個正整數(shù)a,b的最大公約數(shù)…(7分).
(2)最小公倍數(shù)與最大公約數(shù)的積,等于兩數(shù)的積,
故偽代碼如圖:
…(14分).

點評 本題考查的知識點是偽代碼,算法案例,正確理解最小公倍數(shù)與最大公約數(shù)的積,等于兩數(shù)的積,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知 p:x<-1,q:x<-2,則p是q的(  )
A.充分但不必要條件B.必要但不充分條件
C.充分且必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若關(guān)于x的方程ax2+bx+c=0(a,b,c∈R且a≠0)有實根,且不等式(a-b)2+(b-c)2+(c-a)2≥ma2恒成立,則實數(shù)m的最大值為( 。
A.$\frac{9}{16}$B.$\frac{3}{4}$C.1D.$\frac{9}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若集合M={y|y=sinx},N={x|x2-4≤0},則M∩N=[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在一次有獎明信片的100000個有機會中獎的號碼(編號00000-99999)中,郵政部門按照隨機抽取的方式確定后兩位是23的作為中獎號碼,這是運用了系統(tǒng)抽樣方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.直線3x+4y=b與圓x2+y2-2x-2y+1=0相切,則b=( 。
A.-2或12B.2或-12C.-2或-12D.2或12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=ax3+bx2+(c-3a-2b)x+d(a>0)的圖象如圖.
(Ⅰ)求c,d的值;
(Ⅱ)若函數(shù)f(x)在x=2處的切線方程為3x+y-11=0,求函數(shù)f(x)的解析式;
(Ⅲ)若x0=5,方程f(x)=8a有三個不同的根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=$\frac{1-x}{1+x}$.
(1)求f(f(2)))的值;
(2)若實數(shù)a滿足f(a2)=$-\frac{3}{5}$,且lg2a-1<0,求a的值;
(3)設(shè)函數(shù)f1(x)=f(x)=$\frac{1-x}{1+x}$(x≠-1),對于一切正整數(shù)n,都有fn+1(x)=f1(fn(x)),且f3(x)=f4(x),求f2012(x)的值;
(4)設(shè)函數(shù)φ(x)=$\frac{1+x}{x-1}|x-2{|}^{\frac{1}{2}}$(x≠1),若函數(shù)g(x)=f(x)•φ(x),t=a2-2a+$\frac{13}{3}$(a∈R),試判斷g(1.2),g(2.5),g(t)的大小關(guān)系.(請按由大到小的順序排)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.用更相減損術(shù)得111與148的最大公約數(shù)為(  )
A.1B.17C.23D.37

查看答案和解析>>

同步練習(xí)冊答案