6.用更相減損術(shù)得111與148的最大公約數(shù)為( 。
A.1B.17C.23D.37

分析 用更相減損術(shù)求111與148的最大公約數(shù),先用大數(shù)減去小數(shù),再用減數(shù)和差中較大的數(shù)字減去較小的數(shù)字,這樣減下去,知道減數(shù)和差相同,得到最大公約數(shù).

解答 解:用更相減損術(shù)求111與148的最大公約數(shù).
148-111=37,
111-37=74
74-37=37,
∴111與148的最大公約數(shù)37,
故選:D.

點(diǎn)評(píng) 本題考查輾轉(zhuǎn)相除法和更相減損術(shù),這是案例中的一種題目,這種題目解題時(shí)需要有耐心,認(rèn)真計(jì)算,不要在數(shù)字運(yùn)算上出錯(cuò).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.若a,b是兩個(gè)正整數(shù),閱讀如圖的偽代碼.
(1)寫出此偽代碼的算法功能.
(2)參照此偽代碼,寫出求兩數(shù)a,b的最小公倍數(shù)的偽代碼.(注:兩數(shù)的最小公倍數(shù)等于這兩數(shù)的積除以這兩數(shù)的最大公約數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}滿足:an+1=f(an),n∈N*
(1)f(x)=x-sinx,0<a1<1,求證:0<an+1<an<1;
(2)f(x)=x3-x2+$\frac{x}{2}$+$\frac{1}{4}$,試確定一個(gè)首項(xiàng)a1,使得數(shù)列{an}為單調(diào)數(shù)列,并證明你的結(jié)論;
(3)f(x)=$\frac{1}{4}$(x2+3),a1>0,若對(duì)一切n∈N*,都有an+1>an,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知△ABC中,∠ABC=90°,AB=1.AC=2,若△ABC內(nèi)部的一點(diǎn)P滿足$\frac{{S}_{△PAB}}{PA•PB}$=$\frac{{S}_{△PBC}}{PB•PC}=\frac{{S}_{△PAC}}{PA•PC}$,則PA+PB+PC的值為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某集團(tuán)公司在2013年投入巨資分三期興建垃圾資源處理廠,1期2013年投入,2期2015年投入,3期2017年投入,具體情況如下表:
 1期投入1億元 建垃圾堆肥廠 造有機(jī)肥十多萬噸 年收益2千萬元
 2期投入4億元 建焚燒發(fā)電1廠 年發(fā)電1.3億kw 年收益4千萬元
 3期投入2億元 建焚燒發(fā)電2廠年發(fā)電1.3億kw  年收益4千萬元
如果每期的投資從第二年開始見效,且不考慮存貸款利息,設(shè)2013年以后的n年(2014年第1年)的總收益為f(x)(單位:千萬元),試求f(n)的表達(dá)式,并預(yù)測哪一年能收回全部投資款.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若曲線x2-4x+y2-2y+4=0(y≥1)與直線y=k(x+1)有2個(gè)公共點(diǎn),則k的取值范圍是( 。
A.(0,$\frac{1}{2}$]B.($\frac{1}{4}$,$\frac{3}{4}$]C.[$\frac{1}{2}$,$\frac{3}{4}$)D.[$\frac{1}{4}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知兩等差數(shù)列{an}和{bn},前n項(xiàng)和分別為Sn,Tn,若$\frac{{a}_{n}}{_{n}}=\frac{4n+2}{2n-5}$,則$\frac{{S}_{19}}{{T}_{19}}$=$\frac{14}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)$\left\{{\begin{array}{l}{{x^2}+1,x≤0}\\{\sqrt{x},x>0}\end{array}}\right.$,則f(f(-2))=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知實(shí)數(shù)x,y滿足關(guān)系式xy-x-y=1,求x2+y2的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案