1.直線3x+4y=b與圓x2+y2-2x-2y+1=0相切,則b=( 。
A.-2或12B.2或-12C.-2或-12D.2或12

分析 化圓的一般式方程為標(biāo)準(zhǔn)式,求出圓心坐標(biāo)和半徑,由圓心到直線的距離等于圓的半徑列式求得b值.

解答 解:由圓x2+y2-2x-2y+1=0,化為標(biāo)準(zhǔn)方程為(x-1)2+(y-1)2=1,
∴圓心坐標(biāo)為(1,1),半徑為1,
∵直線3x+4y=b與圓x2+y2-2x-2y+1=0相切,
∴圓心(1,1)到直線3x+4y-b=0的距離等于圓的半徑,
即$\frac{|3×1+4×1-b|}{\sqrt{{3}^{2}+{4}^{2}}}=\frac{|7-b|}{5}=1$,解得:b=2或b=12.
故選:D.

點評 本題考查圓的切線方程,考查了點到直線的距離公式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若圓C的圓心坐標(biāo)為(2,-3),且圓C經(jīng)過點M(5,-7),則圓C的半徑為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)集合A={x|-2≤x≤5},B={x|x2-3mx+2m2-m-1<0}.
(1)當(dāng)x∈Z時,求A的非空真子集的個數(shù);
(2)若A?B,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.四棱臺的兩底邊長分別為1cm,2cm,高是1cm,它的側(cè)面積為(  )
A.6cm2B.$\frac{{3\sqrt{5}}}{4}$cm2C.$\frac{2}{3}$$\sqrt{3}$cm2D.3$\sqrt{5}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.若a,b是兩個正整數(shù),閱讀如圖的偽代碼.
(1)寫出此偽代碼的算法功能.
(2)參照此偽代碼,寫出求兩數(shù)a,b的最小公倍數(shù)的偽代碼.(注:兩數(shù)的最小公倍數(shù)等于這兩數(shù)的積除以這兩數(shù)的最大公約數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若集合A={x|x2+x-6=0},B={x2+x+a=0},且A∩B=B,求實數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標(biāo)系xoy中,已知直線l:ax+y+3=0,點A(0,2),若直線l上存在點M,滿足|MA|2+|MO|2=10,則實數(shù)a的取值范圍是{a|$a≤-\sqrt{3}$或$a≥\sqrt{3}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,延長AB和DC相交于點P,若$\frac{PB}{PA}$=$\frac{1}{2}$,$\frac{PC}{PD}$=$\frac{1}{3}$,則$\frac{BC}{AD}$的值為$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若曲線x2-4x+y2-2y+4=0(y≥1)與直線y=k(x+1)有2個公共點,則k的取值范圍是(  )
A.(0,$\frac{1}{2}$]B.($\frac{1}{4}$,$\frac{3}{4}$]C.[$\frac{1}{2}$,$\frac{3}{4}$)D.[$\frac{1}{4}$,1)

查看答案和解析>>

同步練習(xí)冊答案