【題目】已知三個村莊A,B,C構(gòu)成一個三角形,且AB=5千米,BC=12千米,AC=13千米.為了方便市民生活,現(xiàn)在△ABC內(nèi)任取一點M建一大型生活超市,則M到A,B,C的距離都不小于2千米的概率為
A. B.
C.
D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以橢圓的離心率為
,以其四個頂點為頂點的四邊形的面積等于
.
1
求橢圓
的標(biāo)準(zhǔn)方程;
2
過原點且斜率不為0的直線
與橢圓
交于
兩點,
是橢圓
的右頂點,直線
分別與
軸交于點
,問:以
為直徑的圓是否恒過
軸上的定點?若恒過
軸上的定點,請求出該定點的坐標(biāo);若不恒過
軸上的定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是圓錐
的底面
的直徑,
是圓
上異于
的任意一點,以
為直徑的圓與
的另一個交點為
為
的中點.現(xiàn)給出以下結(jié)論:
①為直角三角形
②平面平面
③平面必與圓錐
的某條母線平行
其中正確結(jié)論的個數(shù)是
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線
在點
處的切線方程為
.
(1)求的解析式;
(2)證明:曲線上任一點處的切線與直線
和直線
所圍成的三角形的面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的方程為
.以坐標(biāo)原點為極點,
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求曲線C的參數(shù)方程和直線的直角坐標(biāo)方程;
(2)若直線與
軸和y軸分別交于A,B兩點,P為曲線C上的動點,求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知動點P與兩定點F1(﹣1,0)、F2(1,0)的連線的斜率之積為,求動點P的軌跡方程.
(2)已知雙曲線的漸近線方程為y=±x,且與橢圓
1有公共焦點,求此雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為
(其中
為參數(shù)),以坐標(biāo)原點
為極點,
軸的正半軸為極軸建立極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(Ⅰ)求C的普通方程和直線的傾斜角;
(Ⅱ)設(shè)點(0,2),
和
交于
兩點,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心在直線
:
上,與直線
:
相切,且截直線
:
所得弦長為6
(Ⅰ)求圓的方程
(Ⅱ)過點是否存在直線
,使以
被圓
截得弦
為直徑的圓經(jīng)過原點?若存在,寫出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線
:
(
為參數(shù)),以坐標(biāo)原點
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,直線
的極坐標(biāo)方程為
.
(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線交曲線
于
,
兩點,交曲線
于
,
兩點,求
的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com