【題目】在直角坐標(biāo)系中,曲線(xiàn)C的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為

(1)求曲線(xiàn)C的參數(shù)方程和直線(xiàn)的直角坐標(biāo)方程;

(2)若直線(xiàn)軸和y軸分別交于A,B兩點(diǎn),P為曲線(xiàn)C上的動(dòng)點(diǎn),求PAB面積的最大值.

【答案】1為參數(shù)),2

【解析】

1)根據(jù)橢圓參數(shù)方程形式和極坐標(biāo)與直角坐標(biāo)互化原則即可得到結(jié)果;(2)可求出,所以求解面積最大值只需求出點(diǎn)到直線(xiàn)距離的最大值;通過(guò)假設(shè),利用點(diǎn)到直線(xiàn)距離公式得到,從而得到當(dāng)時(shí),最大,從而進(jìn)一步求得所求最值.

1)由,得的參數(shù)方程為為參數(shù))

,得直線(xiàn)的直角坐標(biāo)方程為

2)在中分別令可得:,

設(shè)曲線(xiàn)上點(diǎn),則距離:

,其中:,

當(dāng),

所以面積的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,實(shí)數(shù),函數(shù),函數(shù).

(Ⅰ)令,當(dāng)時(shí),試討論函數(shù)在其定義域內(nèi)的單調(diào)性;

(Ⅱ)當(dāng)時(shí),令,是否存在實(shí)數(shù),使得對(duì)于函數(shù)定義域中的任意實(shí)數(shù),均存在實(shí)數(shù),有成立?若存在,求出實(shí)數(shù)的取值集合;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(I)討論的單調(diào)性;

(II)若恒成立,證明:當(dāng)時(shí),.

(III)在(II)的條件下,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn) y = x3 + x2 在點(diǎn) P0 處的切線(xiàn)平行于直線(xiàn)

4xy1=0,且點(diǎn) P0 在第三象限,

P0的坐標(biāo);

若直線(xiàn), l 也過(guò)切點(diǎn)P0 ,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)恰好是橢圓的右焦點(diǎn).

1)求實(shí)數(shù)的值及拋物線(xiàn)的準(zhǔn)線(xiàn)方程;

2)過(guò)點(diǎn)任作兩條互相垂直的直線(xiàn)分別交拋物線(xiàn)、點(diǎn),求兩條弦的弦長(zhǎng)之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三個(gè)村莊AB,C構(gòu)成一個(gè)三角形,且AB=5千米,BC=12千米,AC=13千米.為了方便市民生活,現(xiàn)在ABC內(nèi)任取一點(diǎn)M建一大型生活超市,則MAB,C的距離都不小于2千米的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在底面為正方形的四棱錐P—ABCD中,AB=2,PA=4,PB=PD=ACBD相交于點(diǎn)O,E,G分別為PD,CD中點(diǎn),

(1)求證:EO//平面PBC;

(2)設(shè)線(xiàn)段BC上點(diǎn)F滿(mǎn)足BC=3BF,求三棱錐E—OFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P為橢圓C1ab0)上一點(diǎn),F1F2分別是橢圓C的左、右兩個(gè)焦點(diǎn),|PF1|2|PF2|,且cosF1PF2,過(guò)點(diǎn)F2且斜率為k的直線(xiàn)l與橢圓C交于AB兩點(diǎn).

1)求橢圓C的離心率;

2)若點(diǎn)M1)在C上,求△MAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年10月1日,在慶祝新中國(guó)成立70周年閱兵中,由我國(guó)自主研制的軍用飛機(jī)和軍用無(wú)人機(jī)等參閱航空裝備分秒不差飛越天安門(mén),壯軍威,振民心,令世人矚目.飛行員高超的飛行技術(shù)離不開(kāi)艱苦的訓(xùn)練和科學(xué)的數(shù)據(jù)分析.一次飛行訓(xùn)練中,地面觀(guān)測(cè)站觀(guān)測(cè)到一架參閱直升飛機(jī)以千米/小時(shí)的速度在同一高度向正東飛行,如圖,第一次觀(guān)測(cè)到該飛機(jī)在北偏西的方向上,1分鐘后第二次觀(guān)測(cè)到該飛機(jī)在北偏東的方向上,仰角為,則直升機(jī)飛行的高度為________千米.(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案