【題目】如圖,四邊形是邊長為2的正方形.平面,且

1)求證:平面平面

2)線段上是否存在一點,使三棱錐的高若存在,請求出的值;若不存在,請說明理由.

【答案】1)詳見解析;(2)存在,.

【解析】

1)根據(jù)線面垂直的性質(zhì)定理,結(jié)合面面垂直的判定定理進(jìn)行證明即可.

2)假設(shè)存在這樣的點.結(jié)合(1)中的結(jié)論,根據(jù)面面垂直的性質(zhì)定理和線面垂直的判定定理,棱錐的體積公式,結(jié)合線面平行的判定理和線面平行的性質(zhì)進(jìn)行求解即可.

(1)∵平面, 平面,

又因為是正方形,所以,,因此平面

平面,∴平面平面;

2)∵,,,∴

假設(shè)線段上存在一點滿足題意.

由(1)知,平面平面,

平面平面

又∵,∴平面,則

,,,

平面,又平面,∴,

,平面平面,

平面,

∴點到平面的距離與點到平面的距離相等.

,∴

,∴

,∴.∴

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某游樂園的一個摩天輪半徑為10米,輪子的底部在地面上2米處,如果此摩天輪每20分鐘轉(zhuǎn)一圈,當(dāng)摩天輪上某人經(jīng)過處時開始計時(按逆時針方向轉(zhuǎn)),(其中平行于地面).

1)求開始轉(zhuǎn)動5分鐘時此人相對于地面的高度.

2)開始轉(zhuǎn)動分鐘時,摩天輪上此人經(jīng)過點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以、、、、為頂點的五面體中,平面平面,,四邊形為平行四邊形,且.

(1)求證:;

(2)若,直線與平面所成角為,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,角所對的邊分別是,,且.

1)求角

2,所在平面內(nèi)一點,且滿足,求的最小值,并求取得最小值時的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),則下列結(jié)論中不正確的是(

A.曲線存在對稱中心B.曲線存在對稱軸

C.函數(shù)的最大值為D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)為了了解不同年齡的人對一款智能家電的評價,隨機(jī)選取了50名購買該家電的消費(fèi)者,讓他們根據(jù)實際使用體驗進(jìn)行評分.

(Ⅰ)設(shè)消費(fèi)者的年齡為,對該款智能家電的評分為.若根據(jù)統(tǒng)計數(shù)據(jù),用最小二乘法得到關(guān)于的線性回歸方程為,且年齡的方差為,評分的方差為.求的相關(guān)系數(shù),并據(jù)此判斷對該款智能家電的評分與年齡的相關(guān)性強(qiáng)弱.

(Ⅱ)按照一定的標(biāo)準(zhǔn),將50名消費(fèi)者的年齡劃分為“青年”和“中老年”,評分劃分為“好評”和“差評”,整理得到如下數(shù)據(jù),請判斷是否有的把握認(rèn)為對該智能家電的評價與年齡有關(guān).

好評

差評

青年

8

16

中老年

20

6

附:線性回歸直線的斜率;相關(guān)系數(shù),獨立性檢驗中的,其中.

臨界值表:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,設(shè).

1)若,記數(shù)列的前項和為.①求證:數(shù)列為等差數(shù)列;②若不等式對任意的都成立,求實數(shù)的最小值;

2)若,且,是否存在正整數(shù),使得無窮數(shù)列,,…成公差不為0的等差數(shù)列?若存在,給出數(shù)列的一個通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】勞動教育是中國特色社會主義教育制度的重要內(nèi)容,某高中計劃組織學(xué)生參與各項職業(yè)體驗,讓學(xué)生在勞動課程中掌握一定勞動技能,理解勞動創(chuàng)造價值,培養(yǎng)勞動自立意識和主動服務(wù)他人、服務(wù)社會的情懷.學(xué)校計劃下周在高一年級開設(shè)“縫紉體驗課”,聘請“織補(bǔ)匠人”李阿姨給同學(xué)們傳授織補(bǔ)技藝。高一年級有6個班,李阿姨每周一到周五只有下午第2節(jié)課的時間可以給同學(xué)們上課,所以必須安排有兩個班合班上課,高一年級6個班“縫紉體驗課”的不同上課順序有( )

A.600B.3600C.1200D.1800

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線的方程為.

1)求曲線的直角坐標(biāo)方程;

2)設(shè)曲線與直線交于點,點的坐標(biāo)為(31),求.

查看答案和解析>>

同步練習(xí)冊答案