已知函數(shù)f(x)=
1
2
ax2-(2a+1)x+2lnx(a>0).
(Ⅰ) 若a≠
1
2
,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
1
2
<a<1時(shí),判斷函數(shù)f(x)在區(qū)間[1,2]上有無(wú)零點(diǎn)?寫(xiě)出推理過(guò)程.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),f′(x)=
(ax-1)(x-2)
x
,再分0<a<
1
2
a>
1
2
兩種情況討論.
(Ⅱ)結(jié)合著(Ⅰ)中的結(jié)論,得到f(x)在[1,
1
a
]
上單調(diào)遞增,在[
1
a
,2]
上單調(diào)遞減,從而判斷f(x)max=f(
1
a
)=-2-
1
2a
-2lna
<0,再進(jìn)一步解答.
解答: 解:(Ⅰ)∵f′(x)=ax-(2a+1)+
2
x
(x>0).
即 f′(x)=
(ax-1)(x-2)
x
(x>0).
1
a
-2=
1-2a
a
,∵a>0,a≠
1
2

0<a<
1
2
時(shí),
1
a
>2
a>
1
2
時(shí),
1
a
<2
,由f'(x)>0得x>
1
a
或x<2
由f'(x)<0得2<x<
1
a

所以當(dāng)0<a<
1
2
,f(x)的單調(diào)遞增區(qū)間是(0,2]和[
1
a
,+∞)
,單調(diào)遞減區(qū)間是[2,
1
a
]

同理當(dāng)a>
1
2
,f(x)的單調(diào)遞增區(qū)間是(0,
1
a
]
和[2,+∞),單調(diào)遞減區(qū)間是[
1
a
,2]

(Ⅱ)由(Ⅰ)可知,
當(dāng)
1
2
<a<1
時(shí),f(x)在[1,
1
a
]
上單調(diào)遞增,在[
1
a
,2]
上單調(diào)遞減,
f(x)max=f(
1
a
)=-2-
1
2a
-2lna

1
2
<a<1
可知-2-2lna<0,f(x)max<0,
故在區(qū)間[1,2]f(x)<0.恒成立.
故當(dāng)a>
1
2
時(shí),函數(shù)f(x)在區(qū)間[1,2]上沒(méi)有零點(diǎn).(注意:僅證明f(1)<0,f(2)<0就說(shuō)明無(wú)零點(diǎn)不得分)
點(diǎn)評(píng):本題是導(dǎo)數(shù)部分的?純(nèi)容,需要注意的是,再含參數(shù)的函數(shù)式中,一般求單調(diào)區(qū)間時(shí)可能都會(huì)涉及到分類討論,討論時(shí)要根據(jù)導(dǎo)數(shù)式的特征做到“不重不漏”,導(dǎo)數(shù)為我們研究很多函數(shù)的性質(zhì)提供了強(qiáng)有力的工具,也是高考中的?贾R(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若3cos2
A-B
2
+5cos2
C
2
=4,則tanC的最大值為( 。
A、-
3
4
B、-
4
3
C、-
2
4
D、-2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=sin(2ωx-
π
6
)
的圖象關(guān)于直線x=
π
3
對(duì)稱,其中ω∈(-
1
2
,
5
2
)

(1)求f(x)的解析式;
(2)將y=f(x)的圖象向左平移
π
3
個(gè)單位,再將得到的圖象的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍(縱坐標(biāo)不變)后得到y(tǒng)=g(x)的圖象,求y=g(x)的解析式;
(3)若函數(shù)y=g(x)(x∈(
π
2
,3π)
)的圖象與y=a的圖象有三個(gè)交點(diǎn)且交點(diǎn)的橫坐標(biāo)成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2
3
sin(x+
π
4
)cos(x+
π
4
)-sin(2x+π).
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若將f(x)的圖象向右平移
π
12
個(gè)單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高校共有450名學(xué)生參加環(huán)保知識(shí)測(cè)試,其中男生250名,女生200名,已知所有學(xué)生的成績(jī)均大于60且小于等于100,現(xiàn)按性別用分層抽樣的方法從中抽取45名學(xué)生的成績(jī),從男生和女生中抽查的結(jié)果分別如表1和表2:
表1
成績(jī)分組(60,70](70,80](80,90](90,100]
人數(shù)3m86
表2
成績(jī)分組(60,70](70,80](80,90](90,100]
人數(shù)25n4
(Ⅰ)求m,n的值,
(Ⅱ)記表2中分組在(60,70]中的2名女生為A、B,(90,l00]中的4名女生為C,D、E、F,現(xiàn)從表2中(60,70]的女生中抽取1人,從(90,100]的女生中抽取2人做專題發(fā)言,求(60,70]中的女生A和(90,100]中的女生C同時(shí)被抽到的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx,其中a≠0.
(1)已知點(diǎn)P(1,0)在y=f(x)的圖象上,求m的值;
(2)當(dāng)a=8時(shí),設(shè)F(x)=f′(x)+g(x),討論F(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)盒子中裝有大小相同的小球n個(gè),在小球上分別標(biāo)有1,2,3,…,n的號(hào)碼,已知從盒子中隨機(jī)的取出兩個(gè)球,兩球的號(hào)碼最大值為n的概率為
1
4

(Ⅰ)問(wèn):盒子中裝有幾個(gè)小球?
(Ⅱ)現(xiàn)從盒子中隨機(jī)的取出4個(gè)球,記所取4個(gè)球的號(hào)碼中,連續(xù)自然數(shù)的個(gè)數(shù)的最大值為隨機(jī)變量ξ(如取2468時(shí),ξ=0;取1246或1245時(shí),ξ=2;取1235時(shí),ξ=3)求隨機(jī)變量ξ的分布列及均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足:3x+4y=12,則x2+y2+2x的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文)如果函數(shù)f(x)=sin(ωx+
π
6
)(ω>0)的兩個(gè)相鄰零點(diǎn)之間的距離為
π
12
,則ω的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案