【題目】已知函數(shù)
(Ⅰ)若的定義域和值域均是,求實(shí)數(shù)的值;
(Ⅱ)若在區(qū)間上是減函數(shù),且對(duì)任意的,都有,求實(shí)數(shù)的取值范圍;
(Ⅲ)若,且對(duì)任意的,都存在,使得成立,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ)2(Ⅱ)(Ⅲ)
【解析】
試題分析:(I)由函數(shù)f(x)的解析式,可得函數(shù)在(-∞,a]上單調(diào)遞減,進(jìn)而得到f(x)在[1,a]上單調(diào)遞減,則,由此構(gòu)造關(guān)于a的方程組,解之可得答案.(Ⅱ)若f(x)在區(qū)間(-∞,2]上是減函數(shù),則(-∞,2](-∞,a],進(jìn)而結(jié)合x∈[1,a+1]時(shí),f(x)max=f(1),構(gòu)造關(guān)于a的不等式,解不等式,可得答案.(III)由函數(shù)g(x)在[0,1]上遞增,f(x)在[0,1]上遞減,可分別求出兩個(gè)函數(shù)的值域,若對(duì)任意的x∈[0,1],都存在x0∈[0,1],使得f(x0)=g(x)成立;則兩個(gè)函數(shù)的值域滿足:[1,3][6-2a,5],進(jìn)而可得答案
試題解析:(Ⅰ)∵
∴在上單調(diào)遞減,又,∴在上單調(diào)遞減,
∴, ∴, ∴
(Ⅱ)∵在區(qū)間上是減函數(shù), ∴ ∴
∴,
∴時(shí),
又∵對(duì)任意的,都有,
∴, 即 , ∴
(Ⅲ)∵在上遞增,在上遞減,
當(dāng)時(shí),,
∵對(duì)任意的,都存在,使得成立;
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C、F是⊙O上的兩點(diǎn),OC⊥AB,過(guò)點(diǎn)F作⊙O的切線FD交AB的延長(zhǎng)線于點(diǎn)D.連接CF交AB于點(diǎn)E.
(1)求證:DE2=DBDA;
(2)若DB=2,DF=4,試求CE的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲廠根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品(百臺(tái)),其總成本為(萬(wàn)元),其中固定成本為2萬(wàn)元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為1萬(wàn)元(總成本固定成本+生產(chǎn)成本),銷售收入,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問(wèn)題
(1)寫出利潤(rùn)函數(shù)的解析式(利潤(rùn)銷售收入—總成本);
(2)甲廠生產(chǎn)多少臺(tái)新產(chǎn)品時(shí),可使盈利最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),,圓是以的中點(diǎn)為圓心,為半徑的圓.
(1)若圓的切線在軸和軸上截距相等,求切線方程;
(2)若是圓外一點(diǎn),從向圓引切線,為切點(diǎn),為坐標(biāo)原點(diǎn),,求使最小的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)B={1,2},A={x|xB},則A與B的關(guān)系是( )
A.AB
B.BA
C.A∈B
D.B∈A
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式中,正確的個(gè)數(shù)是( )
(1){0}∈{0,1,2};(2){0,1,2}{2,1,0};(3) {0,1,2}.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)人口已經(jīng)出現(xiàn)老齡化與少子化并存的結(jié)構(gòu)特征,測(cè)算顯示中國(guó)是世界上人口老齡化速度最快的國(guó)家之一,再不實(shí)施“放開(kāi)二胎”新政策,整個(gè)社會(huì)將會(huì)出現(xiàn)一系列的問(wèn)題,若某地區(qū)2015年人口總數(shù)為萬(wàn),實(shí)施“放開(kāi)二胎”新政策后專家估計(jì)人口總數(shù)將發(fā)生如下變化:從2016年開(kāi)始到2025年每年人口比上年增加萬(wàn)人,從2026年開(kāi)始到2035年每年人口為上一年的.
(1)求實(shí)施新政策后第年的人口總數(shù)的表達(dá)式(注:2016年為第一年);
(2)若新政策實(shí)施后的2016年到2035年人口平均值超過(guò)萬(wàn),則需調(diào)整政策,否則繼續(xù)實(shí)施,問(wèn)到2035年后是否需要調(diào)整政策?(說(shuō)明:).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)當(dāng)時(shí),求證:;
(2)當(dāng)函數(shù)與函數(shù)有且僅有一個(gè)交點(diǎn),求的值;
(3)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車間將10名技工平均分為甲,乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工零件若干,其中合格零件的個(gè)數(shù)如下表:
1號(hào) | 2號(hào) | 3號(hào) | 4號(hào) | 5號(hào) | |
甲組 | 4 | 5 | 7 | 9 | 10 |
乙組 | 5 | 6 | 7 | 8 | 9 |
(1)分別求出甲,乙兩組技工在單位時(shí)間內(nèi)完成合格零件的平均數(shù)及方差,并由此判斷哪組工人的技術(shù)水平更好;
(2)質(zhì)監(jiān)部門從該車間甲,乙兩組中各隨機(jī)抽取1名技工,對(duì)其加工的零件進(jìn)行檢測(cè),若兩人完成合格零件個(gè)數(shù)之和超過(guò)12件,則稱該車間“質(zhì)量合格”,否則“不合格”.求該車間“質(zhì)量不合格”的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com