【題目】已知函數(shù)的圖象在點處的切線與直線平行.
(Ⅰ)求函數(shù)的極值;
(Ⅱ)若對于,,求實數(shù)的取值范圍.
【答案】(Ⅰ)在處取得極大值為,無極小值.(Ⅱ)
【解析】
(Ⅰ)求得f(x)的導數(shù),可得切線的斜率,由兩直線平行的條件:斜率相等,可得a,求出f(x)的導數(shù)和單調區(qū)間,即可得到所求極值;
(Ⅱ)設x1>x2,可得f(x1)﹣f(x2)>mx12﹣mx22,設g(x)=f(x)﹣mx2在(0,+∞)為增函數(shù),設g(x)=f(x)﹣mx2在(0,+∞)為增函數(shù),求得g(x)的導數(shù),再由參數(shù)分離和構造函數(shù),求出最值,即可得到所求m的范圍.
(Ⅰ)的導數(shù)為,
可得的圖象在點處的切線斜率為,
由切線與直線平行,可得,即,
,,當時,當時, ,
所以在上遞增,在上遞減,
可得在處取得極大值為,無極小值.
(Ⅱ)設,若,可得,
即
設在上增函數(shù),
即在上恒成立,
可得在上恒成立,設,所以,
在上遞減,在上遞增,在處取得極小值為,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】箱子里有16張撲克牌:紅桃、、4,黑桃、8、7、4、3、2,草花、、6、5、4,方塊、5,老師從這16張牌中挑出一張牌來,并把這張牌的點數(shù)告訴了學生甲,把這張牌的花色告訴了學生乙,這時,老師問學生甲和學生乙:你們能從已知的點數(shù)或花色中推知這張牌是什么牌嗎?于是,老師聽到了如下的對話:學生甲:我不知道這張牌;學生乙:我知道你不知道這張牌;學生甲:現(xiàn)在我知道這張牌了;學生乙:我也知道了.則這張牌是( )
A. 草花5B. 紅桃
C. 紅桃4D. 方塊5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地因受天氣,春季禁漁等因素影響,政府規(guī)定每年的7月1日以后的100天為當年的捕魚期.某漁業(yè)捕撈隊對噸位為的20艘捕魚船一天的捕魚量進行了統(tǒng)計,如下表所示:
捕魚量(單位:噸) | |||||
頻數(shù) | 2 | 7 | 7 | 3 | 1 |
根據(jù)氣象局統(tǒng)計近20年此地每年100天的捕魚期內的晴好天氣情況如下表(捕魚期內的每個晴好天氣漁船方可捕魚,非晴好天氣不捕魚):
晴好天氣(單位:天) | |||||
頻數(shù) | 2 | 7 | 6 | 3 | 2 |
(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)
(Ⅰ)估計漁業(yè)捕撈隊噸位為的漁船一天的捕魚量的平均數(shù);
(Ⅱ)若以(Ⅰ)中確定的平均數(shù)作為上述噸位的捕魚船在晴好天氣捕魚時一天的捕魚量.
①估計一艘上述噸位的捕魚船一年在捕魚期內的捕魚總量;
②已知當?shù)佤~價為2萬元/噸,此種捕魚船在捕魚期內捕魚時,每天成本為10萬元/艘;若不捕魚,每天成本為2萬元/艘,請依據(jù)往年天氣統(tǒng)計數(shù)據(jù),估計一艘此種捕魚船年利潤不少于1600萬元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,為橢圓的左、右焦點,過右焦點的直線與橢圓交于兩點,且的周長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點A是第一象限內橢圓上一點,且在軸上的正投影為右焦點,過點作直線分別交橢圓于兩點,當直線的傾斜角互補時,試問:直線的斜率是否為定值;若是,請求出其定值;否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形中,點,,,對角線,交于點P.
(1)求直線的方程;
(2)若點E,F分別在平行四邊形的邊和上運動,且,求的取值范圍;
(3)試寫出三角形區(qū)域(包括邊界)所滿足的線性約束條件,若在該區(qū)域上任取一點M,使,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).
表中,.
(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間關于開關旋鈕旋轉的弧度數(shù)的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結果和表中數(shù)據(jù),建立關于的回歸方程;
(3)若單位時間內煤氣輸出量與旋轉的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓為其左右焦點,為其上下頂點,四邊形的面積為.點為橢圓上任意一點,以為圓心的圓(記為圓)總經(jīng)過坐標原點.
(1)求橢圓的長軸的最小值,并確定此時橢圓的方程;
(2)對于(1)中確定的橢圓,若給定圓,則圓和圓的公共弦的長是否為定值?如果是,求的值;如果不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com