精英家教網 > 高中數學 > 題目詳情
在用反證法證明命題時“△ABC中,若∠C=90°,則∠A,∠B都是銳角”應假設
 
考點:反證法與放縮法
專題:推理和證明
分析:用反證法證明命題的真假,應先按符合題設的條件,假設題設成立,再判斷得出的結論是否成立即可.
解答: 解:用反證法證明命題“△ABC中,若∠C=90°,則∠A,∠B都是銳角”時,
應先假設:△ABC中,∠A,∠B不都是銳角.
故答案為:△ABC中,∠A,∠B不都是銳角
點評:此題主要考查了反證法,注意逆命題的與原命題的關系是解題關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知集合A={x|x2+x-6=0},B={x|mx=1},若B?A,求由實數m所構成的集合M.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=
x+1(x≥0)
x+3 (x<0)
的單調增區(qū)間為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知z1,z2∈C,|z1|=|z2|=|z1-z2|=1,則|z1+z2|=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,在四邊形ABCD中,|
AB
|+|
BD
|+|
DC
|=6,|
AB
||
BD
|+|
DC
|
BD
|=9,
AB
BD
=
DC
BD
=0,若P為線段BD上的動點,則
AP
AB
+
CP
CD
的取值范圍為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知扇形的圓心角為2,周長為12,則該扇形的面積是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

對函數 f(x),若存在區(qū)間M=[a,b]使得{y|y=f(x),x∈M}=M,則稱f(x)為“穩(wěn)定函數”,給出下列函數
①f(x)=x2;②f(x)=tan
π
4
x③f(x)=lnx.其中為“穩(wěn)定函數”的序號為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

若x,y滿足約束條件:
x+2y≤24
3x+2y≤36
1≤x≤10
1≤y≤12
,則z=2x+3y的最大值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

若奇函數f(x)=xcosx+c的定義域為[a,b],(b>a),則a+b+c=
 

查看答案和解析>>

同步練習冊答案