【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性;
(2)對(duì)任意兩個(gè)實(shí)數(shù),求證:當(dāng)
時(shí),
;
(3)對(duì)任何實(shí)數(shù),
恒成立,求實(shí)數(shù)
的取值范圍.
【答案】(1)函數(shù)為
上的奇函數(shù);(2)證明見解析;(3)
.
【解析】試題分析:(1)根據(jù)函數(shù)奇偶性的定義判斷函數(shù)的奇偶性即可,(2)根據(jù)題意有兩種情形:①若,②
,求出
的表達(dá)式,根據(jù)函數(shù)的性質(zhì)證明即可;(3)根據(jù)函數(shù)的單調(diào)性問題轉(zhuǎn)化為
,換元后,根據(jù)二次函數(shù)的性質(zhì)求出
,即可得
的取值范圍.
試題解析:
(1)任取,則
,
,
任取,則
,
,
又,所以對(duì)于任意的
,均有
,
所以函數(shù)為
上的奇函數(shù).
(2)任取,當(dāng)
時(shí),(不妨令
),
有下列兩種情形:(1)若,
則;
(2)若,則
,
因?yàn)?/span>,所以
,
所以,即
.
(3)由(1)(2)得:
對(duì)任意兩個(gè)實(shí)數(shù),當(dāng)
時(shí),
,
則對(duì)任意兩個(gè)實(shí)數(shù),當(dāng)
時(shí),
,
所以函數(shù)為
上的單調(diào)遞增函數(shù),
即為
,
所以.
所以原題意等價(jià)于對(duì)于任何實(shí)數(shù)恒成立,
只需,而
,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在高中學(xué)習(xí)過程中,同學(xué)們經(jīng)常這樣說:“數(shù)學(xué)物理不分家,如果物理成績好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問題�!蹦嘲噌槍�(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績與數(shù)學(xué)成績具有線性相關(guān)關(guān)系的結(jié)論�,F(xiàn)從該班隨機(jī)抽取5位學(xué)生在一次考試中的數(shù)學(xué)和物理成績,如下表:
(1)求數(shù)學(xué)成績y對(duì)物理成績x的線性回歸方程。若某位學(xué)生的物理成績?yōu)?0分,預(yù)測他的數(shù)學(xué)成績;
(2)要從抽取的這5位學(xué)生中隨機(jī)抽取2位參加一項(xiàng)知識(shí)競賽,求選中的學(xué)生的數(shù)學(xué)成績至少有一位高于120分的概率。(參考公式: 參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn),為了解教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取名學(xué)生的成績進(jìn)行統(tǒng)計(jì),作出的莖葉圖如下圖,記成績不低于
分者為“成績優(yōu)良”.
(1)分別計(jì)算甲、乙兩班個(gè)樣本中,化學(xué)分?jǐn)?shù)前十的平均分,并據(jù)此判斷哪種教學(xué)方式的教學(xué)效果更
佳;
(2)甲、乙兩班個(gè)樣本中,成績在
分以下(不含
分)的學(xué)生中任意選取
人,求這
人來自不同班級(jí)的概率;
(3)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過
的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計(jì) | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計(jì) |
附:
獨(dú)立性檢驗(yàn)臨界值表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:y=3x+3,求:
(1)點(diǎn)P(4,5)關(guān)于直線l的對(duì)稱點(diǎn)坐標(biāo);
(2)直線l1:y=x-2關(guān)于直線l的對(duì)稱直線的方程;
(3)直線l關(guān)于點(diǎn)A(3,2)的對(duì)稱直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)
處的切線方程;
(2)若函數(shù)在
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
,
分別是其左、右焦點(diǎn),以線段
為直徑的圓與橢圓
有且僅有兩個(gè)交點(diǎn).
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)且不與坐標(biāo)軸垂直的直線
交橢圓于
兩點(diǎn),線段
的垂直平分線與
軸交于點(diǎn)
,點(diǎn)
橫坐標(biāo)的取值范圍是
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖.圖中A點(diǎn)表示十月的平均最高氣溫約為15℃,B點(diǎn)表示四月的平均最低氣溫約為5℃.下面敘述不正確的是 ( )
A. 各月的平均最低氣溫都在0℃以上
B. 七月的平均溫差比一月的平均溫差大
C. 三月和十一月的平均最高氣溫基本相同
D. 平均最高氣溫高于20℃的月份有5個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn)的橢圓的兩焦點(diǎn)分別為雙曲線
的頂點(diǎn),直線
與橢圓
交于
、
兩點(diǎn),且
,點(diǎn)
是橢圓
上異于
、
的任意一點(diǎn),直線
外的點(diǎn)
滿足
,
.
(1)求點(diǎn)的軌跡方程;
(2)試確定點(diǎn)的坐標(biāo),使得
的面積最大,并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌汽車的店,對(duì)最近100份分期付款購車情況進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤為1萬元;分6期或9期付款,其利潤為2萬元;分12期付款,其利潤為3萬元.
付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
頻數(shù) | 20 | 20 |
(1)若以上表計(jì)算出的頻率近似替代概率,從該店采用分期付款購車的顧客(數(shù)量較大)中隨機(jī)抽取3為顧客,求事件:“至多有1位采用分6期付款“的概率
;
(2)按分層抽樣方式從這100為顧客中抽取5人,再從抽取的5人中隨機(jī)抽取3人,記該店在這3人身上賺取的總利潤為隨機(jī)變量,求
的分布列和數(shù)學(xué)期望
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com