【題目】已知函數(shù)f(x)=ax+ 的圖象經(jīng)過點A(1,1),B(2,﹣1).
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性并用定義證明;
(3)求f(x)在區(qū)間[ ,1]上的值域.
【答案】
(1)解:∵f(x)的圖象過A(1,1)、B(2,﹣1),
∴ ,解得 ,
∴
(2)證明:設(shè)任意x1,x2∈(0,+∞),且x1<x2,
f(x1)﹣f(x2)=(﹣x1+ )﹣(﹣x2+ )
=(x2﹣x1)+ =
由x1,x2∈(0,+∞)得,x1x2>0,x1x2+2>0.
由x1<x2得,x2﹣x1>0,
∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),
∴函數(shù) 在(0,+∞)上為減函數(shù)
(3)解:由(2)知,函數(shù) 在[ ,1]上為減函數(shù),
∴f(x)min=f(1)=1, ,
∴f(x)的值域是
【解析】(1)將點A、B的坐標代入解析式列出方程,求出a、b的值,即可求出f(x);(2)利用定義法證明函數(shù)單調(diào)性步驟:取值、作差、變形、定號、下結(jié)論進行證明;(3)由(2)判斷f(x)在[ ,1]上的單調(diào)性,由單調(diào)性求出最值,即可得到f(x)的值域.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的左焦點為,左準線方程為.
(1)求橢圓的標準方程;
(2)已知直線交橢圓于, 兩點.
①若直線經(jīng)過橢圓的左焦點,交軸于點,且滿足, .求證: 為定值;
②若(為原點),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集為{x|﹣2≤x≤1}. (Ⅰ)求a的值;
(Ⅱ)若f(x)﹣2f( )≤k恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(xt)=xt2+bxt .
(1)若b=2,且xt=log2t,t∈[ ,2],求f(xt)的最大值;
(2)當y=f(xt)與y=f(f(xt))有相同的值域時,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=1,an+1=2an+2n.
(1)設(shè)bn=.證明:數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{an}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓.
(1)若橢圓的右焦點坐標為,求的值;
(2)由橢圓上不同三點構(gòu)成三角形稱為橢圓的內(nèi)接三角形.若以為直角頂點的橢圓的內(nèi)接等腰直角三角形恰有三個,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,直線: ,橢圓: , 、分別為橢圓的左、右焦點.
(1)當直線過右焦點時,求直線的方程;
(2)設(shè)直線與橢圓交于, 兩點, , 的重心分別為, ,若原點在以線段為直徑的圓內(nèi),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于無窮數(shù)列,記,若數(shù)列滿足:“存在,使得只要(且),必有”,則稱數(shù)列具有性質(zhì).
(Ⅰ)若數(shù)列滿足判斷數(shù)列是否具有性質(zhì)?是否具有性質(zhì)?
(Ⅱ)求證:“是有限集”是“數(shù)列具有性質(zhì)”的必要不充分條件;
(Ⅲ)已知是各項為正整數(shù)的數(shù)列,且既具有性質(zhì),又具有性質(zhì),求證:存在整數(shù),使得是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,圓
(1)過點的圓的切線只有一條,求的值及切線方程;
(2)若過點且在兩坐標軸上截距相等的直線被圓截得的弦長為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com